Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 3548, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391460

RESUMEN

Microbial fermentation of lignocellulosic biomass to produce industrial chemicals is exacerbated by the recalcitrant network of lignin, cellulose and hemicelluloses comprising the plant secondary cell wall. In this study, we show that transgenic poplar (Populus trichocarpa) lines can be solubilized without any pretreatment by the extreme thermophile Caldicellulosiruptor bescii that has been metabolically engineered to shift its fermentation products away from inhibitory organic acids to ethanol. Carbohydrate solubilization and conversion of unpretreated milled biomass is nearly 90% for two transgenic lines, compared to only 25% for wild-type poplar. Unexpectedly, unpretreated intact poplar stems achieved nearly 70% of the fermentation production observed with milled poplar as the substrate. The nearly quantitative microbial conversion of the carbohydrate content of unpretreated transgenic lignocellulosic biomass bodes well for full utilization of renewable biomass feedstocks.


Asunto(s)
Clostridiales/metabolismo , Fermentación , Microbiología Industrial , Ingeniería Metabólica , Populus/metabolismo , Biomasa , Celulosa/metabolismo , Clostridiales/genética , Etanol/metabolismo , Lignina/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polisacáridos/metabolismo , Populus/química , Populus/genética
2.
Biotechnol Bioeng ; 116(8): 1901-1908, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30982956

RESUMEN

The extreme thermophile Caldicellulosiruptor bescii solubilizes and metabolizes the carbohydrate content of lignocellulose, a process that ultimately ceases because of biomass recalcitrance, accumulation of fermentation products, inhibition by lignin moieties, and reduction of metabolic activity. Deconstruction of low loadings of lignocellulose (5 g/L), either natural or transgenic, whether unpretreated or subjected to hydrothermal processing, by C. bescii typically results in less than 40% carbohydrate solubilization. Mild alkali pretreatment (up to 0.09 g NaOH/g biomass) improved switchgrass carbohydrate solubilization by C. bescii to over 70% compared to less than 30% for no pretreatment, with two-thirds of the carbohydrate content in the treated switchgrass converted to acetate and lactate. C. bescii grown on high loadings of unpretreated switchgrass (50 g/L) retained in a pH-controlled bioreactor slowly purged (τ = 80 hr) with growth media without a carbon source improved carbohydrate solubilization to over 40% compared to batch culture at 29%. But more significant was the doubling of solubilized carbohydrate conversion to fermentation products, which increased from 40% in batch to over 80% in the purged system, an improvement attributed to maintaining the bioreactor culture in a metabolically active state. This strategy should be considered for optimizing solubilization and conversion of lignocellulose by C. bescii and other lignocellulolytic microorganisms.


Asunto(s)
Firmicutes/metabolismo , Lignina/metabolismo , Biocombustibles/microbiología , Reactores Biológicos , Caldicellulosiruptor , Fermentación , Firmicutes/crecimiento & desarrollo , Panicum/metabolismo , Solubilidad
3.
Appl Environ Microbiol ; 83(24)2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28986379

RESUMEN

The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tapirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GH genes in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization.IMPORTANCE The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus Caldicellulosiruptor rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain Caldicellulosiruptor species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in Caldicellulosiruptor bescii, the nuanced, substrate-specific in vivo roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in C. bescii, working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/química , Firmicutes/genética , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Panicum/química , Populus/química , Firmicutes/metabolismo
4.
Biotechnol Bioeng ; 114(12): 2947-2954, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28840937

RESUMEN

The archaeon Pyrococcus furiosus is emerging as a metabolic engineering platform for production of fuels and chemicals, such that more must be known about this organism's characteristics in bioprocessing contexts. Its ability to grow at temperatures from 70 to greater than 100°C and thereby avoid contamination, offers the opportunity for long duration, continuous bioprocesses as an alternative to batch systems. Toward that end, we analyzed the transcriptome of P. furiosus to reveal its metabolic state during different growth modes that are relevant to bioprocessing. As cells progressed from exponential to stationary phase in batch cultures, genes involved in biosynthetic pathways important to replacing diminishing supplies of key nutrients and genes responsible for the onset of stress responses were up-regulated. In contrast, during continuous culture, the progression to higher dilution rates down-regulated many biosynthetic processes as nutrient supplies were increased. Most interesting was the contrast between batch exponential phase and continuous culture at comparable growth rates (∼0.4 hr-1 ), where over 200 genes were differentially transcribed, indicating among other things, N-limitation in the chemostat and the onset of oxidative stress. The results here suggest that cellular processes involved in carbon and electron flux in P. furiosus were significantly impacted by growth mode, phase and rate, factors that need to be taken into account when developing successful metabolic engineering strategies.


Asunto(s)
Proteínas Arqueales/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Proliferación Celular/fisiología , Metabolismo Energético/fisiología , Pyrococcus furiosus/crecimiento & desarrollo , Pyrococcus furiosus/metabolismo , Transcriptoma/fisiología
5.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28625990

RESUMEN

Improving access to the carbohydrate content of lignocellulose is key to reducing recalcitrance for microbial deconstruction and conversion to fuels and chemicals. Caldicellulosiruptor bescii completely solubilizes naked microcrystalline cellulose, yet this transformation is impeded within the context of the plant cell wall by a network of lignin and hemicellulose. Here, the bioavailability of carbohydrates to C. bescii at 70°C was examined for reduced lignin transgenic switchgrass lines COMT3(+) and MYB Trans, their corresponding parental lines (cultivar Alamo) COMT3(-) and MYB wild type (WT), and the natural variant cultivar Cave-in-Rock (CR). Transgenic modification improved carbohydrate solubilization by C. bescii to 15% (2.3-fold) for MYB and to 36% (1.5-fold) for COMT, comparable to the levels achieved for the natural variant, CR (36%). Carbohydrate solubilization was nearly doubled after two consecutive microbial fermentations compared to one microbial step, but it never exceeded 50% overall. Hydrothermal treatment (180°C) prior to microbial steps improved solubilization 3.7-fold for the most recalcitrant line (MYB WT) and increased carbohydrate recovery to nearly 50% for the least recalcitrant lines [COMT3(+) and CR]. Alternating microbial and hydrothermal steps (T→M→T→M) further increased bioavailability, achieving carbohydrate solubilization ranging from 50% for MYB WT to above 70% for COMT3(+) and CR. Incomplete carbohydrate solubilization suggests that cellulose in the highly lignified residue was inaccessible; indeed, residue from the T→M→T→M treatment was primarily glucan and inert materials (lignin and ash). While C. bescii could significantly solubilize the transgenic switchgrass lines and natural variant tested here, additional or alternative strategies (physical, chemical, enzymatic, and/or genetic) are needed to eliminate recalcitrance.IMPORTANCE Key to a microbial process for solubilization of plant biomass is the organism's access to the carbohydrate content of lignocellulose. Economically viable routes will characteristically minimize physical, chemical, and biological pretreatment such that microbial steps contribute to the greatest extent possible. Recently, transgenic versions of plants and trees have been developed with the intention of lowering the barrier to lignocellulose conversion, with particular focus on lignin content and composition. Here, the extremely thermophilic bacterium Caldicellulosiruptor bescii was used to solubilize natural and genetically modified switchgrass lines, with and without the aid of hydrothermal treatment. For lignocellulose conversion, it is clear that the microorganism, plant biomass substrate, and processing steps must all be considered simultaneously to achieve optimal results. Whether switchgrass lines engineered for low lignin or natural variants with desirable properties are used, conversion will depend on microbial access to crystalline cellulose in the plant cell wall.


Asunto(s)
Bacterias Grampositivas/metabolismo , Lignina/metabolismo , Panicum/microbiología , Plantas Modificadas Genéticamente/microbiología , Polisacáridos/metabolismo , Biomasa , Fermentación , Bacterias Grampositivas/genética , Calor , Lignina/química , Panicum/química , Panicum/genética , Panicum/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polisacáridos/química
6.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476773

RESUMEN

Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii Furthermore, a facile approach for assessing genomic stability in C. bescii has been established.IMPORTANCECaldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.


Asunto(s)
Genoma Bacteriano , Inestabilidad Genómica , Bacterias Grampositivas/genética , Lignina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Genética , Bacterias Grampositivas/metabolismo , Calor
7.
Microb Biotechnol ; 10(6): 1546-1557, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28322023

RESUMEN

Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass-deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides. Key genes were identified using the global gene response of the microbe to model plant polysaccharides and various types of unpretreated, chemically pretreated and genetically modified plant biomass. While the majority of C. saccharolyticus genes responding were similar between plant biomasses; subtle differences were discernable, most importantly between chemically pretreated or genetically modified biomass that both exhibit similar levels of solubilization by the microbe. Furthermore, the results here present a new paradigm for assessing plant-microbe interactions that can be deployed as a biological assay to report on the complexity and recalcitrance of plant biomass.


Asunto(s)
Proteínas Bacterianas/genética , Firmicutes/genética , Firmicutes/metabolismo , Lignina/metabolismo , Populus/química , Populus/genética , Ácidos/química , Proteínas Bacterianas/metabolismo , Biotransformación , Populus/metabolismo , Populus/microbiología , Transcriptoma
8.
Biosens Bioelectron ; 78: 160-166, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26606307

RESUMEN

New methods and technology are needed to quickly and accurately detect potential biological warfare agents, such as Bacillus anthracis, causal agent of anthrax in humans and animals. Here, we report the detection of a simulant of B. anthracis (B. globigii) alone and in a mixture with a different species of Bacillus to test non-specific interference using a portable surface plasmon resonance (SPR) biosensor (SPIRIT 4.0, Seattle Sensor Systems). Both direct capture and antibody amplification were used to determine the limit of detection for spores of B. globigii, and to detect spores of B. globigii in a mixed sample containing another Bacillus spp. Spores of B. globigii were detected by anti-B. globigii (anti-Bg) coated sensors by direct capture at a concentration of 10(7)spores/mL, and with a secondary antibody amplification at a concentration of 10(5)spores/mL. Spores of B. globigii were differentially detected in a 1:1 mixture with B. pumilus spores from equal concentrations (10(7)spores/mL) with a secondary antibody amplification. To our knowledge, this is the first report of the differential detection of B. globigii with SPR in a mixed sample containing at least one additional Bacillus spp., highlighting the potential for SPR to detect any target bacterium in a mixed sample of closely related species. With the availability of portable instrumentation to accurately detect biological warfare agents such as B. anthracis, emergency responders can implement protocols in a timely fashion, limiting the amount of exposed individuals.


Asunto(s)
Carbunco/microbiología , Antígenos Bacterianos/aislamiento & purificación , Bacillus anthracis/aislamiento & purificación , Técnicas Biosensibles , Carbunco/diagnóstico , Antígenos Bacterianos/química , Bacillus subtilis/aislamiento & purificación , Humanos , Esporas Bacterianas/aislamiento & purificación , Resonancia por Plasmón de Superficie
9.
J Agric Food Chem ; 62(18): 4204-13, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24735088

RESUMEN

Winter barley (Hordeum vulgare L.), a potential feedstock for fuel ethanol production, may be contaminated with the trichothecene mycotoxin deoxynivalenol (DON). DON is a threat to feed and food safety in the United States and may become concentrated during the production of distillers dried grains with solubles (DDGS). DDGS is a coproduct of fuel ethanol production and is increasingly being used as feed for domestic animals. Therefore, new strategies to reduce the threat of DON in DDGS need to be developed and implemented for grain destined for fuel ethanol production. It is known that large concentrations of DON accumulate in the hulls of wheat and barley. Consequently, improved methods are needed to carefully remove the hull from the grain and preserve the starchy endosperm. Whole kernels from five Virginia winter barley genotypes were used to evaluate the abilities of two different milling strategies (roller milling and precision milling (FitzMill)) for their ability to remove the hull-enriched tissue from the kernel while maintaining starch levels and reducing DON levels in the endosperm-enriched tissue. After whole kernels were milled, DON and starch levels were quantified in the hull-enriched fractions and endosperm-enriched fractions. Initial milling experiments demonstrated that the precision mill system (6 min run time) is able to reduce more DON than the roller mill but with higher starch losses. The average percent DON removed from the kernel with the roller mill was 36.7% ± 5.5 and the average percent DON removed from the dehulled kernel with the precision mill was 85.1% ± 9.0. Endosperm-enriched fractions collected from the roller mill and precision mill contained starch levels ranging from 49.0% ± 12.1 to 59.1% ± 0.5 and 58.5% ± 1.6 to 65.3% ± 3.9, respectively. On average, the precision mill removed a mass of 23.1% ± 6.8 and resulted in starch losses of 9.6% ± 6.3, but produced an endosperm-enriched fraction with relatively very little average DON (5.5 ± 2.7 µg g(-1)). In contrast, on average, the roller mill removed a mass of 12.2% ± 1.6 and resulted in starch losses of 2.1% ± 0.5, but produced an endosperm-enriched fraction with high average DON (20.7 ± 13.5 µg g(-1)). In a time course precision milling experiment, we tested barley genotypes Nomini, Atlantic, and VA96-44-304 and attempted to reduce the starch loss seen in the first experiment while maintaining low DON concentrations. Decreasing the run time of the precision mill from 5 to 2 min, reduced starch loss at the expense of higher DON concentrations. Aspirated fractions revealed that the precision milled hull-enriched fraction contained endosperm-enriched components that were highly contaminated with DON. This work has important implications for the reduction of mycotoxins such as DON in barley fuel ethanol coproducts and barley enriched animal feeds and human foods.


Asunto(s)
Manipulación de Alimentos/métodos , Hordeum/química , Micotoxinas/análisis , Tricotecenos/análisis , Alimentación Animal/análisis , Estados Unidos
10.
Toxins (Basel) ; 6(4): 1155-68, 2014 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-24674933

RESUMEN

Fuel ethanol co-products known as distillers' dried grains with solubles (DDGS) are a significant source of energy, protein, and phosphorous in animal feed. Fuel ethanol production may concentrate mycotoxins present in corn into DDGS. One hundred and forty one corn DDGS lots collected in 2011 from 78 ethanol plants located in 12 states were screened for the mycotoxins deoxynivalenol (DON), 15-acetyldeoxynivalenol (15-ADON), 3-acetyldeoxynivalenol (3-ADON), nivalenol (NIV), and zearalenone (ZON). DON ranged from <0.50 to 14.62 µg g-1, 15-ADON ranged from <0.10 to 7.55 µg g-1, and ZON ranged from <0.10 to 2.12 µg g-1. None of the DDGS lots contained 3-ADON or NIV. Plants in OH had the highest levels of DON overall (mean of 9.51 µg g-1), and plants in NY, MI, IN, NE, and WI had mean DON levels >1 and <4 µg g-1. Twenty six percent (36/141) of the DDGS lots contained 1.0 to 5.0 µg g-1 DON, 2% (3/141) contained >5.0 and <10.0 µg g-1 DON, and 3% (4/141) contained >10.0 µg g-1 DON. All DDGS lots contaminated with unacceptable levels of DON evaded detection prior to their commercial distribution and were likely sold as feed products.


Asunto(s)
Alimentación Animal/microbiología , Biocombustibles , Destilación , Etanol/metabolismo , Fermentación , Microbiología de Alimentos , Micotoxinas/análisis , Zea mays/microbiología , Animales , Estados Unidos
11.
Plant Dis ; 98(5): 599-606, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-30708529

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most serious diseases impacting the U.S. barley (Hordeum vulgare) industry. The mycotoxin deoxynivalenol (DON), produced by the pathogen, renders grain unmarketable if concentrations exceed threshold values set for end-use markets. Development of cultivars with improved FHB resistance and reduced DON accumulation is necessary to ensure minimal losses. Elite hulled and hulless genotypes developed by the Virginia Tech winter barley breeding program were screened in inoculated, mist-irrigated FHB nurseries over 2 years at two locations in Virginia to validate resistance levels over years and locations. Results demonstrated that barley genotypes varied significantly for resistance to FHB and DON accumulation. The hulled 'Nomini', hulless 'Eve', and hulless line VA06H-48 were consistently resistant across locations to both FHB and DON accumulation. Screening the genotypes with molecular markers on chromosomes 2H and 6H for FHB and DON revealed quantitative trait loci regions which may confer resistance in the Virginia Tech germplasm. Ongoing and future work with mapping populations seeks to identify novel regions for resistance to FHB and DON accumulation unique to the Virginia Tech breeding program.

12.
Biotechnol Biofuels ; 6(1): 20, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23390890

RESUMEN

BACKGROUND: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weaken the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predominant. Bacteriophage lytic enzymes are peptidoglycan hydrolases that can degrade the Gram positive cell wall when exposed externally and provide a novel source of antimicrobials that are highly refractory to resistance development. RESULTS: The streptococcal phage LambdaSa2 (λSa2) endolysin demonstrated strong lytic activity towards 17 of 22 strains of lactobacilli, staphylococci or streptococci and maintained an optimal specific activity at pH 5.5 and in the presence of ≤ 5% ethanol (fermentation conditions) toward L. fermentum. Lactobacillus bacteriophage endolysins LysA, LysA2 and LysgaY showed exolytic activity towards 60% of the lactobacilli tested including four L. fermentum isolates from fuel ethanol fermentations. In turbidity reduction assays LysA was able to reduce optical density >75% for 50% of the sensitive strains and >50% for the remaining strains. LysA2 and LysgaY were only able to decrease cellular turbidity by <50%. Optimal specific activities were achieved for LysA, LysA2, and LysgaY at pH 5.5. The presence of ethanol (≤5%) did not reduce the lytic activity. Lysins were able to reduce both L. fermentum (BR0315-1) (λSa2 endolysin) and L. reuteri (B-14171) (LysA) contaminants in mock fermentations of corn fiber hydrolysates. CONCLUSION: Bacteriophage lytic enzymes are strong candidates for application as antimicrobials to control lactic acid bacterial contamination in fuel ethanol fermentations.

13.
Plant Dis ; 96(2): 279-284, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30731796

RESUMEN

Fusarium graminearum (teleomorph Gibberella zeae), is a devastating disease of barley (Hordeum vulgare) in the United States. Recent epidemics of FHB in the mid-Atlantic region have underscored the need to develop new commercial varieties of barley that are resistant to FHB and restrict accumulation of the mycotoxin deoxynivalenol (DON). FHB incidence, FHB index, and DON levels of Virginia hulled and hulless barley genotypes were evaluated over five years (2006 to 2010) in FHB nurseries in Virginia. FHB incidence ranged from 22.5% (2010) to 80.1% (2008), and mean DON levels ranged from 0.5 ± 0.4 (2008) to 2.4 ± 2.1 ppm (2010). Barley genotype played a significant role in determining FHB resistance in 2006 to 2009. DON levels were significantly different among barley genotypes in 2007, 2008, and 2009. FHB incidence was positively correlated with FHB index in all 5 years studied. In 2006 and 2010, FHB incidence and index were positively correlated with DON. Early spike emergence resulted in higher FHB incidence and index in 2007, 2008, and 2010. This preliminary work has identified some promising hulled and hulless barley genotypes for targeted breeding and commercialization efforts in FHB nurseries in the future; 'Eve' (hulless) and 'Thoroughbred' (hulled) ranked among the most FHB resistant genotypes.

14.
Biotechnol Biofuels ; 4: 26, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21888629

RESUMEN

BACKGROUND: The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. RESULTS: Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. CONCLUSIONS: This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation.

15.
Appl Environ Microbiol ; 77(4): 1162-70, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21169453

RESUMEN

The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of small grains, such as wheat and barley, in the United States. New strategies to mitigate the threat of DON need to be developed and implemented. TRI101 and TRI201 are trichothecene 3-O-acetyltransferases that are able to modify DON and reduce its toxicity. Recent work has highlighted differences in the activities of TRI101 from two different species of Fusarium (F. graminearum and F. sporotrichioides), but little is known about the relative activities of TRI101/TRI201 enzymes produced by other species of Fusarium. We cloned TRI101 or TRI201 genes from seven different species of Fusarium and found genetic identity between sequences ranging from 66% to 98%. In vitro feeding studies using transformed yeast showed that all of the TRI101/TRI201 enzymes tested were able to acetylate DON; conversion of DON to 3-acetyl-deoxynivalenol (3ADON) ranged from 50.5% to 100.0%, depending on the Fusarium species from which the gene originated. A time course assay showed that the rate of acetylation varied from species to species, with the gene from F. sporotrichioides having the lowest rate. Steady-state kinetic assays using seven purified enzymes produced catalytic efficiencies for DON acetylation ranging from 6.8 × 10(4) M(-1)·s(-1) to 4.7 × 10(6) M(-1)·s(-1). Thermostability measurements for the seven orthologs ranged from 37.1°C to 43.2°C. Extended sequence analysis of portions of TRI101/TRI201 from 31 species of Fusarium (including known trichothecene producers and nonproducers) suggested that other members of the genus may contain functional TRI101/TRI201 genes, some with the potential to outperform those evaluated in the present study.


Asunto(s)
Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Fusarium/enzimología , Tricotecenos/biosíntesis , Tricotecenos/metabolismo , Acetilación , Acetiltransferasas/química , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Fusarium/genética , Genes Fúngicos , Análisis de Secuencia de ADN , Tricotecenos/química
16.
Pest Manag Sci ; 65(5): 533-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19253417

RESUMEN

Recent research indicates that RNA translocation occurs between certain parasitic plant species and their hosts. The movement of at least 27 mRNAs has been demonstrated between hosts and Cuscuta pentagona Engelm., with the largest proportion of these being regulatory genes. Movement of RNAi signals has been documented from hosts to the parasites Triphysaria versicolor (Frisch & CA Mey) and Orobanche aegyptiaca (Pers.), demonstrating that the regulation of genes in one species can be influenced by transfer of RNA signals through a parasitic association. This review considers the implications of these findings in light of present understanding of host-parasite connections and the growing body of evidence that RNAs are able to act as signal molecules that convey regulatory information in a cell- and tissue-specific manner. Together, this suggests that parasitic plants can exchange RNAs with their hosts, and that this may be part of the coordinated growth and development that occurs during the process of parasitism. This phenomenon offers promise for new insights into parasitic plants, and new opportunities for the control of parasitic weeds.


Asunto(s)
Cuscuta/metabolismo , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Plantas/metabolismo , Transporte de ARN , ARN de Planta/metabolismo , Cuscuta/genética , Enfermedades de las Plantas/genética , Plantas/genética , ARN de Planta/genética , Transducción de Señal
17.
Plant Physiol ; 143(2): 1037-43, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17189329

RESUMEN

An intriguing new paradigm in plant biology is that systemically mobile mRNAs play a role in coordinating development. In this process, specific mRNAs are loaded into the phloem transport stream for translocation to distant tissues, where they may impact on developmental processes. However, despite its potential significance for plant growth regulation, mRNA trafficking remains poorly understood and challenging to study. Here, we show that phloem-mobile mRNAs can also traffic between widely divergent species from a host to the plant parasite lespedeza dodder (Cuscuta pentagona Engelm.). Reverse transcription-polymerase chain reaction and microarray analysis were used to detect specific tomato (Lycopersicon esculentum Mill.) transcripts in dodder grown on tomato that were not present in control dodder grown on other host species. Foreign transcripts included LeGAI, which has previously been shown to be translocated in the phloem, as well as nine other transcripts not reported to be mobile. Dodders are parasitic plants that obtain resources by drawing from the phloem of a host plant and have joint plasmodesmata with host cortical cells. Although viruses are known to move between dodder and its hosts, translocation of endogenous plant mRNA has not been reported. These results point to a potentially new level of interspecies communication, and raise questions about the ability of parasites to recognize, use, and respond to transcripts acquired from their hosts.


Asunto(s)
Arabidopsis/metabolismo , Cucurbita/metabolismo , Cuscuta/metabolismo , Nicotiana/metabolismo , ARN Mensajero/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/genética , Arabidopsis/parasitología , Cucurbita/genética , Cucurbita/parasitología , Cuscuta/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/parasitología , Nicotiana/genética , Nicotiana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...