Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leg Med (Tokyo) ; 71: 102507, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127024

RESUMEN

Fentanyl is a potent synthetic opioid widely used in medicine for its effective analgesic properties, particularly in surgical procedures and in the treatment of severe, chronic pain. In recent decades, however, there has been a worrying increase in the illicit use of fentanyl, particularly in North America. This rise in illicit use is concerning because fentanyl is associated with polydrug abuse, which adds layers of complexity and dangerous. This review provides a comprehensive examination of fentanyl, focusing on its synthesis and medical use. It also discusses the significance of the piperidine ring in medicinal chemistry as well as the critical role of fentanyl in pain management and anesthesia. Furthermore, it addresses the challenges associated with the abuse potential of fentanyl and the resulting public health concerns. The study aims to strike a balance between the clinical benefits and risks of fentanyl by advocating for innovative uses while addressing public health issues. It examines the chemistry, pharmacokinetics and pharmacodynamics of fentanyl and highlights the importance of personalized medicine in the administration of opioids. The review underscores the necessity of continuous research and adaptation in both clinical use and public health strategies.

2.
Eur J Med Chem ; 276: 116675, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39004020

RESUMEN

Antimicrobial resistance (AMR) has emerged as a long-standing global issue ever since the introduction of penicillin, the first antibiotic. Scientists are constantly working to develop innovative antibiotics that are more effective and superior. Unfortunately, the misuse of antibiotics has resulted in their declining effectiveness over the years. By 2050, it is projected that approximately 10 million lives could be lost annually due to antibiotic resistance. Gaining insight into the mechanisms behind the development and transmission of AMR in well-known bacteria including Escherichia coli, Bacillus pumilus, Enterobacter aerogenes, Salmonella typhimurium, and the gut microbiota is crucial for researchers. Environmental contamination in third world and developing countries also plays a significant role in the increase of AMR. Despite the availability of numerous recognized antibiotics to combat bacterial infections, their effectiveness is diminishing due to the growing problem of AMR. The overuse of antibiotics has led to an increase in resistance rates and negative impacts on global health. This highlights the importance of implementing strong antimicrobial stewardship and improving global monitoring, as emphasized by the World Health Organization (WHO) and other organizations. In the face of these obstacles, quinoxaline derivatives have emerged as promising candidates. They are characterized by their remarkable efficacy against a broad spectrum of harmful bacteria, including strains that are resistant to multiple drugs. These compounds are known for their strong structural stability and adaptability, making them a promising and creative solution to the AMR crisis. This review aims to assess the effectiveness of quinoxaline derivatives in treating drug-resistant infections, with the goal of making a meaningful contribution to the global fight against AMR.


Asunto(s)
Antibacterianos , Quinoxalinas , Quinoxalinas/farmacología , Quinoxalinas/química , Quinoxalinas/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bacterias/efectos de los fármacos
3.
Molecules ; 26(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834028

RESUMEN

Lawesson's reagent (LR) is a well-known classic example of a compound with unique construction and unusual chemical behavior, with a wide range of applications in synthetic organic chemistry. Its main functions were rounded for the thionation of various carbonyl groups in the early days, with exemplary results. However, the role of Lawesson's reagent in synthesis has changed drastically, and now its use can help the chemistry community to understand innovative ideas. These include constructing biologically valuable heterocycles, coupling reactions, and the thionation of natural compounds. The ease of availability and the convenient usage of LR as a thionating agent made us compile a review on the new diverse applications on some common functional groups, such as ketones, esters, amides, alcohols, and carboxylic acids, with biological applications. Since the applications of LR are now diverse, we have also included some new classes of heterocycles such as thiazepines, phosphine sulfides, thiophenes, and organothiophosphorus compounds. Thionation of some biologically essential steroids and terpenoids has also been compiled. This review discusses the recent insights into and synthetic applications of this famous reagent from 2009 to January 2021.

4.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670436

RESUMEN

Quinoxalines, a class of N-heterocyclic compounds, are important biological agents, and a significant amount of research activity has been directed towards this class. They have several prominent pharmacological effects like antifungal, antibacterial, antiviral, and antimicrobial. Quinoxaline derivatives have diverse therapeutic uses and have become the crucial component in drugs used to treat cancerous cells, AIDS, plant viruses, schizophrenia, certifying them a great future in medicinal chemistry. Due to the current pandemic situation caused by SARS-COVID 19, it has become essential to synthesize drugs to combat deadly pathogens (bacteria, fungi, viruses) for now and near future. Since quinoxalines is an essential moiety to treat infectious diseases, numerous synthetic routes have been developed by researchers, with a prime focus on green chemistry and cost-effective methods. This review paper highlights the various synthetic routes to prepare quinoxaline and its derivatives, covering the literature for the last two decades. A total of 31 schemes have been explained using the green chemistry approach, cost-effective methods, and quinoxaline derivatives' therapeutic uses.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Pandemias , Quinoxalinas , SARS-CoV-2/metabolismo , Antivirales/síntesis química , Antivirales/química , Antivirales/uso terapéutico , COVID-19/epidemiología , Humanos , Quinoxalinas/síntesis química , Quinoxalinas/química , Quinoxalinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA