Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6050, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770425

RESUMEN

Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.


Asunto(s)
Amidas , Tioamidas , Ratas , Animales , Amidas/química , Tioamidas/química , Disponibilidad Biológica , Péptidos , Permeabilidad , Aminoácidos , Solventes
2.
Nat Chem Biol ; 18(10): 1046-1055, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35654847

RESUMEN

Protein tertiary structure mimetics are valuable tools to target large protein-protein interaction interfaces. Here, we demonstrate a strategy for designing dimeric helix-hairpin motifs from a previously reported three-helix-bundle miniprotein that targets the receptor-binding domain (RBD) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Through truncation of the third helix and optimization of the interhelical loop residues of the miniprotein, we developed a thermostable dimeric helix-hairpin. The dimeric four-helix bundle competes with the human angiotensin-converting enzyme 2 (ACE2) in binding to RBD with 2:2 stoichiometry. Cryogenic-electron microscopy revealed the formation of dimeric spike ectodomain trimer by the four-helix bundle, where all the three RBDs from either spike protein are attached head-to-head in an open conformation, revealing a novel mechanism for virus neutralization. The proteomimetic protects hamsters from high dose viral challenge with replicative SARS-CoV-2 viruses, demonstrating the promise of this class of peptides that inhibit protein-protein interaction through target dimerization.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Dimerización , Humanos , Péptidos/metabolismo , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
RSC Chem Biol ; 3(5): 582-591, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35656485

RESUMEN

The thioamide is a naturally-occurring single atom substitution of the canonical amide bond. The exchange of oxygen to sulfur alters the amide's physical and chemical characteristics, thereby expanding its functionality. Incorporation of thioamides in prevalent secondary structures has demonstrated that they can either have stabilizing, destabilizing, or neutral effects. We performed a systematic investigation of the structural impact of thioamide incorporation in a ß-hairpin scaffold with nuclear magnetic resonance (NMR). Thioamides as hydrogen bond donors did not increase the foldedness of the more stable "YKL" variant of this scaffold. In the less stable "HPT" variant of the scaffold, the thioamide could be stabilizing as a hydrogen bond donor and destabilizing as a hydrogen bond acceptor, but the extent of the perturbation depended upon the position of incorporation. To better understand these effects we performed structural modelling of the macrocyclic folded HPT variants. Finally, we compare the thioamide effects that we observe to previous studies of both side-chain and backbone perturbations to this ß-hairpin scaffold to provide context for our observations.

4.
Nanoscale ; 14(21): 7881-7890, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583859

RESUMEN

Artificial template-mediated fabrication of secondary structures within peptides always attracts great interest in biological systems due to several biomimetic interactions. In all earlier studies, a uniform template containing molecules/nanomaterials was used to target only one type of peptide at a time, which extensively limits the diversity in the generation of artificial protein surface/binding sites. This limitation can be overcome by the incorporation of more than one binding template (heterogeneity) in a single system, for example, Janus nanomaterials, which are challenging and difficult to synthesize. In this context, graphene oxide (GO) is considered an artificial binding site (template). It contains two distinctive binding zones, i.e., surface and edge, which can induce the secondary structure of peptides based on complementary interactions. To establish our concept, we have implemented a hybrid sequence i.e., i, i + 4, i + 7 and i + 11 pattern peptides, which defines a more linear surface, suitable for recognition by the two-dimensional GO. Depending on the amino acid residue at the specific locations, we observed substantial enhancement of peptide helicity either at the surface or at the edges of GO from the random coil. However, non-interacting peptides remain as a random coil. We have established this by circular dichroism study at various conditions, as well as atomic force microscopy and optical imaging study. Furthermore, we have also established our observations using molecular dynamics (MD) simulations. This study reveals that the synthesized GO-peptides composite with different secondary structures and recognition residues can mimic biological systems.


Asunto(s)
Grafito , Péptidos , Secuencia de Aminoácidos , Dicroismo Circular , Grafito/química , Péptidos/química , Estructura Secundaria de Proteína
5.
Angew Chem Int Ed Engl ; 60(47): 24870-24874, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34519402

RESUMEN

Amino acid side chains are key to fine-tuning the microenvironment polarity in proteins composed of polar amide bonds. Here, we report that substituting an oxygen atom of the backbone amide bond with sulfur atom desolvates the thioamide bond, thereby increasing its lipophilicity. The impact of such local desolvation by O to S substitution in proteins was tested by synthesizing thioamidated variants of Pin1 WW domain. We observe that a thioamide acts in synergy with nonpolar amino acid side chains to reduce the microenvironment polarity and increase protein stability by more than 14 °C. Through favorable van der Waals and hydrogen bonding interactions, this single atom substitution significantly stabilizes proteins without altering the amino acid sequence and structure of the native protein.


Asunto(s)
Oxígeno/química , Péptidos/química , Proteínas/química , Azufre/química , Estabilidad Proteica
6.
Methods Enzymol ; 656: 27-57, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34325789

RESUMEN

Chemical modifications of peptides hold great promise for modulating their pharmacological properties. In the last few decades amide to thioamide substitution has been widely explored to modulate the conformation, non-covalent interactions, and proteolytic stability of peptides. Despite widespread utilization, there are some potential limitations including epimerization and degradation under basic and acidic conditions, respectively. In this chapter, we present the synthetic method to build thio-precursors, their site-specific incorporation onto a growing peptide chain, and troubleshooting during the elongation of thioamidated peptides. This highly efficient, rapid, and robust method can be used for positional scanning of the thioamide bond.


Asunto(s)
Péptidos , Tioamidas , Amidas , Conformación Molecular
7.
J Pept Sci ; 26(4-5): e3248, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32202029

RESUMEN

The unique physicochemical properties of a thioamide bond, which is an ideal isostere of an amide bond, have not been fully exploited because of the tedious synthesis of thionated amino acid building blocks. Here, we report a purification-free and highly efficient synthesis of thiobenzotriazolides of Fmoc-protected and orthogonally protected 20 naturally occurring amino acids including asparagine, glutamine, and histidine. The near-quantitative conversion to the respective thioamidated peptides on solid support demonstrates the robustness of the synthetic route. Furthermore, the unaltered incorporation efficiency of thiobenzotriazolides from their stock solution till 48 h suggests their compatibility toward automated peptide synthesis. Finally, utilizing an optimized cocktail of 2% DBU + 5% piperazine for fast Fmoc-deprotection, we report the synthesis of a thioamidated Pin1 WW domain and thioamidated GB1 directly on solid support.


Asunto(s)
Péptidos/síntesis química , Proteínas/síntesis química , Tioamidas/síntesis química , Estructura Molecular , Péptidos/química , Proteínas/química , Tioamidas/química
8.
Chem Sci ; 11(35): 9480-9487, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34094214

RESUMEN

Abundant n → π* interactions between adjacent backbone carbonyl groups, identified by statistical analysis of protein structures, are predicted to play an important role in dictating the structure of proteins. However, experimentally testing the prediction in proteins has been challenging due to the weak nature of this interaction. By amplifying the strength of the n → π* interaction via amino acid substitution and thioamide incorporation at a solvent exposed ß-turn within the GB1 proteins and Pin 1 WW domain, we demonstrate that an n → π* interaction increases the structural stability of proteins by restricting the ϕ torsion angle. Our results also suggest that amino acid side-chain identity and its rotameric conformation play an important and decisive role in dictating the strength of an n → π* interaction.

9.
Methods Mol Biol ; 2001: 17-40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134565

RESUMEN

Macrocyclic peptides are a unique class of molecules that display a relatively constrained peptidic backbone as compared to their linear counterparts leading to the defined 3-D orientation of the constituent amino acids (pharmacophore). Although they are attractive candidates for lead discovery owing to the unique conformational features, their peptidic backbone is susceptible to proteolytic cleavage in various biological fluids that compromise their efficacy. In this chapter we review the various classical and contemporary chemical and biological approaches that have been utilized to combat the metabolic instability of macrocyclic peptides. We note that any chemical modification that helps in providing either local or global conformational rigidity to these macrocyclic peptides aids in improving their metabolic stability typically by slowing the cleavage kinetics by the proteases.


Asunto(s)
Ciclotidas/química , Hormonas Peptídicas/química , Péptidos Cíclicos/química , Administración Oral , Conotoxinas/química , Conotoxinas/metabolismo , Ciclización , Ciclotidas/metabolismo , Ciclotidas/farmacología , Ciclotidas/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Cinética , Metilación , Conformación Molecular , Hormonas Peptídicas/metabolismo , Péptidos Cíclicos/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
10.
Chem Sci ; 9(9): 2443-2451, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29732120

RESUMEN

We show that substituting a single atom, O to S (amide to thioamide), in a peptide bond results in global restriction of the conformational flexibility in peptide macrocycles with minimal perturbation of the parent conformation. The van der Waals interactions between the C[double bond, length as m-dash]S group and the surrounding atoms are the major driving force in inducing the conformational restriction, resulting in well-defined structures of these cyclic peptides with static 3-D presentation of the pharmacophores. Utilizing this property of thioamides, we report the development of a superactive antagonist of pro-angiogenic αvß3, αvß5 and α5ß1 integrins, which are responsible for cancer cell proliferation and survival. Using simple thio-scanning and spatial screening of a non-efficacious and conformationally flexible cyclic peptide, we could achieve a more than 105 fold enhancement in its efficacy in cellulo via a single O to S substitution. The developed peptide shows better efficacy in inhibiting the pro-angiogenic integrins than the drug candidate cilengitide, with a significantly enhanced serum half-life of 36 h compared to that of cilengitide (12 h). The long shelf-life, absence of non-specific toxicity and resistance to degradation of the thioamidated macrocyclic peptides in human serum suggest the promise of thioamides in markedly improving the affinity, efficacy and pharmacology of peptide macrocycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...