Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(21): 18617-18625, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273634

RESUMEN

Metallic or metal oxide-based nanoparticles have the potential to inactivate viruses. Among various metals, copper has shown edge over others. One of the rapidly evolving areas is to combine nanoscience for production of self-sanitizing antiviral surfaces. In this study, we designed antiviral-coated fabrics to combat the spread of viruses. Copper oxide nanoparticles were sonochemically synthesized and subsequently deposited using the dip-coat process to modify the surface of fabric. The morphology and structure of uncoated and coated fabrics were examined by scanning electron microscopy, X-ray diffraction, FTIR, and elemental analysis. The findings show that small, agglomerated rugby ball structures made of copper oxide (CuO) nanoparticles (16 ± 1.6 nm, according to the Scherrer equation) develop on the surface of fabric, resulting in nano-embossing and a hydrophobic (contact angle > 140°) surface. The CuO-coated fabric yielded the maximum zone of inhibition for antibacterial activity. The virucidal activity (against human adenovirus-B) of CuO nanoparticle-fabricated fabric against adenovirus shows decreased 99.99% according to the ISO 18184 testing standard. With the dip and dry approach, any textile industry can use the simple coating procedure without having to change its textile operations. This fabric can be widely used in the face mask, clothing, bedding, and aprons, and the coating remains efficient over more than 25 washes.

2.
Int J Biol Macromol ; 237: 124180, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990398

RESUMEN

Herein we report the fabrication of cationic functionalized cellulose nanofibers (c-CNF) having 0.13 mmol.g-1 ammonium content and its ionic crosslinking via the pad-batch process. The overall chemical modifications were justified through infrared spectroscopy. It is revealed that the tensile strength of ionic crosslinked c-CNF (zc-CNF) improved from 3.8 MPa to 5.4 MPa over c-CNF. The adsorption capacity of zc--CNF was found to be 158 mg.g-1 followed by the Thomas model. Further, the experimental data were used to train and test a series of machine learning (ML) models. A total of 23 various classical ML models (as a benchmark) were compared simultaneously using Pycaret which helped reduce the programming complexity. However, shallow, and deep neural networks are used that outperformed the classic machine learning models. The best classical-tuned ML model using Random Forests regression had an accuracy of 92.6 %. The deep neural network made effective by early stopping and dropout regularization techniques, with 20 × 6 (Neurons x Layers) configuration, showed an appreciable prediction accuracy of 96 %.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Nanofibras/química , Adsorción , Resistencia a la Tracción , Espectrofotometría Infrarroja , Iones
3.
Langmuir ; 38(20): 6376-6386, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35561306

RESUMEN

In recent years, adsorption-based membranes have been widely investigated to remove and separate textile pollutants. However, cyclic adsorption-desorption to reuse a single adsorbent and clear scientific evidence for the adsorption-desorption mechanism remains challenging. Herein, silk nanofibers were used to assess the adsorption potential for the typical anionic dyes from an aqueous medium, and they show great potential toward the removal of acid dyes from the aqueous solution with an adsorption rate of ∼98% in a 1 min interaction. Further, we measured the filtration proficiency of a silk nanofiber membrane in order to propose a continuous mechanism for the removal of acid blue dye, and a complete rejection was observed with a maximum permeability rate of ∼360 ± 5 L·m-2·h-1. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies demonstrate that this fast adsorption occurs due to multiple interactions between the dye molecule and the adsorbent substrate. The as-prepared material also shows remarkable results in desorption. A 50-time cycle exhibits complete adsorption and desorption ability, which not only facilitates high removal aptitude but also produces less solid waste than other conventional adsorbents. Additionally, fluorescent 2-bromo-2-methyl-propionic acid (abbreviated as EtOxPY)-silk nanofibers can facilitate to illustrate a clear adsorption and desorption mechanism. Therefore, the above-prescribed results make electrospun silk nanofibers a suitable choice for removing anionic dyes in real-time applications.


Asunto(s)
Colorantes , Membranas Artificiales , Nanofibras , Seda , Descoloración del Agua , Contaminantes Químicos del Agua , Ácidos/química , Adsorción , Aniones/química , Colorantes/química , Filtración/instrumentación , Filtración/métodos , Concentración de Iones de Hidrógeno , Cinética , Nanofibras/química , Espectroscopía de Fotoelectrones , Seda/química , Espectroscopía Infrarroja por Transformada de Fourier , Descoloración del Agua/instrumentación , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/química
4.
Antibiotics (Basel) ; 11(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35326815

RESUMEN

Nanotechnology provides solutions by combining the fields of textiles and medicine to prevent infectious microbial spread. Our study aimed to evaluate the antimicrobial activity of nanofiber sheets incorporated with a well-known antibiotic, ceftriaxone. It is a third-generation antibiotic that belongs to the cephalosporin group. Different percentages (0, 5%, 10%, 15%, and 20%; based on polymer wt%) of ceftriaxone were incorporated with a polymer such as polyvinyl alcohol (PVA) via electrospinning to fabricate nanofiber sheets. The Kirby-Bauer method was used to evaluate the antimicrobial susceptibility of the nanofiber sheets using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). For the characterization of the nanofiber sheets incorporated with the drug, several techniques were used, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Our results showed that the nanofiber sheets containing ceftriaxone had potential inhibitory activity against E. coli and S. aureus as they had inhibition zones of approximately 20-25 mm on Mueller-Hinton-agar-containing plates. In conclusion, our nanofiber sheets fabricated with ceftriaxone have potential inhibitory effects against bacteria and can be used as a dressing to treat wounds in hospitals and for other biomedical applications.

5.
Environ Sci Pollut Res Int ; 29(1): 653-662, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34338982

RESUMEN

Zein has drawn attention for its great potential for biodegradability and adsorption of hexavalent chromium Cr(VI) that is a carcinogenic industrial pollutant. Zein is a biopolymer extracted from corn and is used for many purposes, but because of its poor stability in aqueous solution, a novel composite of zein and nylon-6 was used to synthesize a nanofibrous membrane using electrospinning to improve its stability and tensile strength. The scanning electron microscope (SEM) image of the zein/nylon-6 (ZN6) nanofiber membrane showed a smooth, beadless, and continuous structure of the nanofibers, but the Fourier transform infrared (FTIR) spectrum of pristine and Cr(VI) saturated ZN6 showed that peaks of secondary amide, carbonyl, and hydroxyl functional groups were involved in adsorption. Optimized experimental parameters were obtained with pH 2.0, contact time 60 min, adsorbent dosage 25 mg, and adsorbate concentration 5.0 mg Cr-VI/mL. Experimental results show that the ZN6 nanofibers removed 87% Cr(VI) with an adsorption capacity of 4.73 mg/g at ambient temperature. Also, the Langmuir isotherm fits well, and the adsorption process followed a pseudo-2nd-order kinetics with r2 of 0.90 and 0.99 respectively.


Asunto(s)
Nanofibras , Contaminantes Químicos del Agua , Zeína , Adsorción , Caprolactama/análogos & derivados , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética , Polímeros , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
6.
Polymers (Basel) ; 13(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685218

RESUMEN

Electrospun biobased polymeric nanofiber blends are widely used as biomaterials for different applications, such as tissue engineering and cell adhesion; however, their surface wettability and handling require further improvements for their practical utilization in the assistance of surgical operations. Therefore, Polyglycolic acid (PGA) and collagen-based nanofibers with three different ratios (40:60, 50:50 and 60:40) were prepared using the electrospinning method, and their surface wettability was improved using ozonation and plasma (nitrogen) treatment. The effect on the wettability and the morphology of pristine and blended PGA and collagen nanofibers was assessed using the WCA test and SEM, respectively. It was observed that PGA/collagen with the ratio 60:40 was the optimal blend, which resulted in nanofibers with easy handling and bead-free morphology that could maintain their structural integrity even after the surface treatments, imparting hydrophilicity on the surface, which can be advantageous for cell adhesion applications. Additionally, a cage-type collector was used during the electrospinning process to provide better handling properties to (PGA/collagen 60:40) blend. The resultant nanofiber mat was then incorporated with activated poly (α,ß-malic acid) to improve its surface hydrophilicity. The chemical composition of PGA/collagen 60:40 was assessed using FTIR spectroscopy, supported by Raman spectroscopy.

7.
Polymers (Basel) ; 13(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34451134

RESUMEN

Water, one of the most priceless sources of life, is becoming dangerously threatened and contaminated due to population growth, industrial development, and climatic variations. The drainage of industrial, farming, and municipal sewage into drinking water sources pollutes the water. The textile processing industry is one of the major consumers of water. Herein, the idea of water-free dyeing of electrospun poly (1, 4-cyclohexane dimethylene isosorbide terephthalate) PICT nanofibers is proposed. For this, two different deep eutectic solvents (DE solvents) were introduced as an alternative to water for the dyeing of PICT nanofibers in order to develop a water-free dyeing medium. For this, C.I. disperse red 167 was used as a model dye to improve the aesthetic properties of PICT nanofibers. PICT nanofibers were dyed by conventional batch dyeing and ultrasonic dyeing methods to investigate the effect of the dyeing technique on color buildup characteristics. Dyeing conditions such as dyeing time, temperature and, dye-concentration were optimized. Morphological and chemical characterization observations revealed a smooth morphology of dyed and undyed PICT nanofibers. The ultrasonically dyed nanofibers showed higher color strength and increased tensile strength compared to conventionally dyed nanofibers. Further, the consumption of electrical and thermal energy was also calculated for both processes. The results confirmed that the ultrasonic dyeing method can save 58% on electrical energy and 25% on thermal energy as compared to conventional dyeing.

8.
Polymers (Basel) ; 13(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925468

RESUMEN

Fiber based antibacterial materials have gained an enormous attraction for the researchers in these days. In this study, a novel Sericin Encapsulated Silver Nanoclusters (sericin-AgNCs) were synthesized through single pot and green synthesis route. Subsequently these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate (CA) fibers for assessing the antibacterial performance. The physicochemical properties of sericin-AgNCs/CA composite fibers were investigated by transmission electron microscopy (TEM), field emission electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and wide X-ray diffraction (XRD). The antibacterial properties of sericin-AgNCs/CA composite fibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically evaluated. The results showed that sericin-AgNCs incorporated in ultrafine CA fibers have played a vital role for antibacterial activity. An amount of 0.17 mg/mL sericin-AgNCs to CA fibers showed more than 90% results and elevated upto >99.9% with 1.7 mg/mL of sericin-AgNCs against E. coli. The study indicated that sericin-AgNCs/CA composite confirms an enhanced antibacterial efficiency, which could be used as a promising antibacterial product.

9.
Nat Prod Res ; 35(2): 327-330, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31140300

RESUMEN

The proposed work, aims to provide a "green" and cutting-edge technique for the mordanting and dyeing of polyester fabric with natural henna dye using the advanced technology of micro waves. For providing a complete "green" and ecofriendly dyeing process, lemon was used as a natural bio mordant with micro waves and results were compared with conventional mordanting method followed by the natural henna dyeing of polyester fabric with microwave. Color properties were analyzed in detail. Scanning electron microscope (SEM), WIDE ANGLE X-RAY DIFFRACTION (WAXD) and Fourier transform infrared spectrometer (ATR-FTIR) studies provide the details of surface and structural changes induced by microwave lemon mordanting and henna dyeing of polyester. Microwave technique clearly reduced the mordanting and dyeing time upto 60-65% with improved fixation and color characteristics.


Asunto(s)
Colorantes/química , Naftoquinonas/química , Poliésteres/química , Textiles , Color , Tecnología Química Verde , Microscopía Electrónica de Rastreo , Microondas , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
Sci Rep ; 10(1): 15307, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943717

RESUMEN

The use of organic solvents for the preparation of nanofibers are challenged due to their volatile and hazardous behavior. Recently deep eutectic solvents (DES) are widely recognized as non-volatile and non-hazardous solvents which never been utilized directly for nanofabrication via electrospinning. Here, we present the preparation of Zein nanofibers using deep eutectic solvents (DES-Zein). The DES-Zein nanofibers were produced at an optimized polymer concentration of 45% (w/w) with pH 7.3 and electroconductivity 233 mS cm-1. DES-Zein nanofibers showed aligned to tweed like cedar leaf morphology tuned by varying the spreading angle from 0° to 90°. In contrast to hydrophobic conventional Zein nanofibers, DES-Zein nanofibers showed super hydrophilic character and about 200 nm finer average diameter. The proposed method of preparing Zein nanofibers using DES opens a new door to continuous electrospinning with tunable morphology, having potential to be used for environmental and biomedical applications.

11.
Environ Technol ; 41(21): 2731-2741, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30734649

RESUMEN

Hybrid nanofibers based on ZnO loaded activated carbon nanofibers (ZnO-ACNFs) are proposed here for the elimination of hazardous lead from aqueous solutions. The prepared ZnO nanoscale material was loaded into the polyacrylonitrile nanofibers (PAN NFs) which were later carbonized by using a novel method named as a plate-sandwich method. The Synthesized nanofibrous composite was characterized by SEM, TEM, EDX, FTIR and XRD techniques to analyze its chemical and morphological properties. Moreover, the nanocomposite was efficaciously applied for the lead (Pb2+) ions removal from wastewater and simulated water through continuous filtration and batch filtration. The ZnO-ACNFs membrane showed outstanding results in adsorptive removal, giving adsorption capacity of 92.59 mg/g within the contact time of 45 min. Compared to their counterparts (ZnO and CNFs), the hybrid ZnO-ACNFs showed excellent performance in removing toxic lead.


Asunto(s)
Nanofibras , Contaminantes Químicos del Agua/análisis , Óxido de Zinc , Adsorción , Cinética , Plomo , Soluciones
12.
Environ Sci Pollut Res Int ; 26(28): 28842-28851, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31376130

RESUMEN

Herein, we attempt to improve the mechanical stability of anionic functionalized cellulose nanofibers (a-CNF) having 1.25 mmol of carboxymethyl groups per gram of cellulose nanofibers (CNF). The a-CNF and cross-linked a-CNF (za-CNF) then used for water desalination in the continuous mode using a tubular adsorption column. It is worth mentioning that the za-CNF possess 40% degree of cross-linking provided better mechanical stability as the tensile strength improved from 3.2 to 5.2 MPa over a-CNF. The IR spectroscopy was used to confirm the success of chemical modifications. Upon ionic cross-linking, the BET surface area reduced from 13.53 to 7.54 m2·g-1 corresponds to a-CNF and za-CNF, respectively. Moreover, this research was extended to determine the dynamic adsorption capacities for a-CNF and za-CNF, which were found to be 21 and 10 mg·g-1 respectively at a flow rate of 5-mL·min-1 explained by Thomas model.


Asunto(s)
Celulosa/química , Nanofibras/química , Adsorción , Resistencia a la Tracción/fisiología , Agua/química
13.
Chemosphere ; 225: 360-367, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30884297

RESUMEN

Lead is one of the toxic elements in the environment having non-biodegradable behavior. On the other hand, the high contamination of lead in water is a major alarming threat to the world nowadays. In this study, PAN-based porous carbon nanofibers (p-CNFs) were used to adsorb the lead ions for both batch and continuous method. The synthesis was achieved by electrospinning and thermal treatment. The characterization of p-CNFs was achieved via FE-SEM, EDX, BET and Raman spectra. Furthermore, the adsorption capability for lead ions was examined using ICP-MS. The adsorption parameters such as pH of the solution, the mass of nanofibers, adsorption time and initial concentration of lead ions were optimized. The obtained results fitted well with the Langmuir model and the pseudo-second-order model. The nanofibers showed high adsorption capability at neutral pH within 1 min. Therefore, the prepared p-CNFs can be recommended for lead ions removal up to its permissible limit in a continuous purification system for drinking water.


Asunto(s)
Carbono , Plomo/aislamiento & purificación , Nanofibras/química , Purificación del Agua/métodos , Adsorción , Cinética , Porosidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación
14.
J Biomed Mater Res B Appl Biomater ; 106(3): 1121-1128, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28503896

RESUMEN

Silver has been widely used as an effective antibacterial agent especially for treating burns and wounds. However, release of silver from materials often arouse side effects due to toxicity of silver towards mammalian cells. Argyria and argyrosis are well known problems of acute toxicity of silver towards human body. Immobilization of silver is an effective approach to reduce silver release. Herein, we present poly(vinyl alcohol) (PVA) composite nanofibers embedded with silver-anchored silica nanoparticles (SSNs) as a novel antibacterial material. Silver nanoparticles anchored on silica nanoparticles were prepared and incorporated into PVA nanofibers to fabricate silver-silica embedded PVA nanofibers (SSN-PVA) by electrospinning. Incorporation of SSNs into PVA was confirmed by TEM and SEM results revealed regular nanofibers whose diameter increased with successive addition of SSNs. The SSN-PVA nanofibers showed significant antibacterial efficacy against both Gram-negative and Gram-positive bacteria. Our research results demonstrated SSN-embedded polymeric nanofibers can open up a promising prospect for the prevention of bacterial infection in diverse biomedical fields including wound dressing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1121-1128, 2018.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Nanofibras , Nanopartículas , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Plata/química , Plata/toxicidad , Vendajes , Reactivos de Enlaces Cruzados , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
15.
Environ Sci Pollut Res Int ; 25(4): 3557-3564, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29164455

RESUMEN

Lead is known for its toxic and non-biodegradable behavior. The consumption of lead-contaminated water is one of the major threat the world is facing nowadays. In this study, polyacrylonitrile (PAN) and magnetite (Fe3O4) composite nanofiber adsorbent was developed for Pb2+ removal in batch mode. The synthesis was done by a simple and scalable process of electrospinning followed by chemical precipitation of Fe3O4. The nanofibers thus obtained were characterized through FTIR, zeta potential analyzer, and scanning electron microscope (SEM) and were analyzed for their adsorption capability for Pb2+ ions. The amount of metal ion adsorbed was influenced by the initial metal ion concentration, the time the adsorbent was in contact, the amount of nanofiber, and the pH of the solution. The experimental data fitted well with pseudo 2nd-order and Langmuir adsorption isotherm model. The nanofibers showed high adsorption capability and could be recommended for Pb2+ removal successfully.


Asunto(s)
Resinas Acrílicas/química , Óxido Ferrosoférrico/química , Plomo/análisis , Nanofibras/química , Purificación del Agua/métodos , Adsorción , Cinética , Modelos Teóricos , Propiedades de Superficie , Contaminantes Químicos del Agua/análisis
16.
Mater Sci Eng C Mater Biol Appl ; 81: 247-251, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887970

RESUMEN

We report the fabrication of novel nanofibers using naturally occurring antimicrobial honey incorporated in poly(1,4-cyclohexane dimethylene isosorbide trephthalate) (PICT) for the potential wound dressing applications. We fabricated PICT/honey using three blend ratios 90:10, 85:15 and 80:20 respectively. Morphology of PICT nanofibers and PICT/honey nanofibers was observed under Scanning Electron Microscope and it showed bead-free nanofibers. Fourier Transform Infrared Spectroscope was used to confirm the presence of honey in PICT electrospun nanofibers. Tensile strength of PICT/honey nanofibers was slightly reduced with variation in effect of elongation. Water contact angle measurements were done with the static contact angle by a contact angle meter, which showed that hydrophobicity was decreased by adding the honey. The XPS spectra showed that honey was present in the PICT/honey nanofibers. The release behavior of honey was investigated by UV-visible Spectrophotometer. The release was complete in 15min and the maximum release of honey was 72mg/L in 10min. Therefore, PICT/honey nanofibers having 15% concentration of honey are suitable for good elastic behavior and tensile strength as compared to other concentrations of honey.


Asunto(s)
Nanofibras , Ciclohexanos , Ciclohexilaminas , Miel , Isosorbida , Resistencia a la Tracción
17.
Carbohydr Polym ; 174: 443-449, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821090

RESUMEN

Recent advancement in dyeing of nanofibers has been accelerated to improve their aesthetic properties, however, achieving good color fastness remains a challenge. Therefore, we attempt to improve the color fastness properties nanofibers. Vat dyes are known for better color fastness and their application on nanofibers has not been investigated to date. Herein, we report dyeing of regenerated cellulose nanofibers (RCNF) that were produced from precursor of cellulose acetate (CA) followed by deacetylation process. The resultant RCNF was dyed with two different vat dyes and the color attributes were examined under spectrophotometer which showed outstanding color build-up. Morphological of CA before and after deacetylation and before and after vat dyeing was investigated under TEM, FE-SEM and SEM respectively. The vat dyed RCNF were further characterized by FTIR and WAXD. Excellent color fastness results demonstrate that vat dyed RCNF can potentially be considered for advanced apparel applications.

18.
Ultrason Sonochem ; 39: 34-38, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732954

RESUMEN

We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time.

19.
Ultrason Sonochem ; 36: 319-325, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28069216

RESUMEN

Herein we report a rapid method for deacetylation of cellulose acetate (CA) nanofibers in order to produce cellulose nanofibers using ultrasonic energy. The CA nanofibers were fabricated via electrospinning thereby treated with NaOH and NaOH/EtOH solutions at various pH levels for 30, 60 and 90min assisted by ultrasonic energy. The nanofiber webs were optimized by degree of deacetylation (DD%) and wicking behavior. The resultant nanofibers were further characterized by FTIR, SEM, WAXD, DSC analysis. The DD% and FTIR results confirmed a complete conversion of CA nanofibers to cellulose nanofibers within 1h with substantial increase of wicking height. Nanofibers morphology under SEM showed slightly swelling and no damage of nanofibers observed by use of ultrasonic energy. The results of ultrasonic-assisted deacetylation are comparable with the conventional deacetylation. Our rapid method offers substantially reduced deacetylation time from 30h to just 1h, thanks to the ultrasonic energy.

20.
Ultrason Sonochem ; 31: 350-4, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26964959

RESUMEN

Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.


Asunto(s)
Celulosa/química , Colorantes/química , Nanofibras , Ultrasonido , Color , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...