Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mycologia ; 116(3): 355-369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573188

RESUMEN

The discovery of bioactive compounds from fungal natural sources holds immense potential for the development of novel therapeutics. The present study investigates the extracts of soil-borne Penicillium notatum and rhizosphere-inhabiting Aspergillus flavus for their antibacterial, antifungal, and cytotoxic potential. Additionally, two compounds were purified using chromatographic and spectroscopic techniques. The results demonstrated that the ethyl acetate fraction of A. flavus exhibited prominent cytotoxic activity against Artemia salina, whereas the ethyl acetate fraction of P. notatum displayed promising antibacterial potential. At dose concentrations of 10, 100, and 1000 µg mL-1, the ethyl acetate fraction of A. flavus showed mortality percentages of 7.6%, 66.4%, and 90%, respectively. The ethyl acetate fraction of P. notatum extract exhibited significant antibacterial activity, forming inhibition zones measuring 41, 38, 34, 34, and 30 mm against B. subtilis, S. flexneri, E. coli, K. pneumoniae, and S. aureus, respectively, at 1000 µg mL-1. At this concentration, inhibition zones of 28, 27, and 15 mm were recorded for P. vulgaris, S. typhi, and X. oryzae. Using bioassay-guided approach, one compound each was purified from the fungal extracts. The initial purification involved mass spectroscopic analysis, followed by structural elucidation using 500 MHz nuclear magnetic resonance (NMR) spectroscopy. Compound 1, derived from A. flavus, was identified as ethyl 2-hydroxy-5,6-dimethyl-4-oxocyclohex-2-ene-1-carboxylate, with a mass of 212, whereas compound 2, isolated from P. notatum, was identified as 3-amino-2-(cyclopenta-2,4-dien-1-ylamino)-8-methoxy-4H-chromen-4-one, with an exact mass of 270. Based on bioassay results, compound 1 was subjected to brine shrimp lethality assay and compound 2 was tested for its antibacterial potential. Compound 1 exhibited 30% lethality against brine shrimp larvae at a concentration of 100 µg mL-1, whereas at 1000 µg mL-1 the mortality increased to 70%. Compound 2 displayed notable antibacterial potential, forming inhibition zones of 30, 24, 19, and 12 mm against S. aureus, E. coli, B. subtilis, and S. flexneri, respectively. In comparison, the standard antibiotic tetracycline produced inhibition zones of 18, 18, 15, and 10 mm against the respective bacterial strains at the same concentration.


Asunto(s)
Antibacterianos , Artemia , Aspergillus flavus , Penicillium , Microbiología del Suelo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Artemia/efectos de los fármacos , Aspergillus flavus/efectos de los fármacos , Penicillium/química , Penicillium/efectos de los fármacos , Animales , Pruebas de Sensibilidad Microbiana , Bacterias/efectos de los fármacos , Rizosfera , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación
2.
Sci Rep ; 14(1): 3934, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365831

RESUMEN

Novel methods are required to enhance lung cancer detection, which has overtaken other cancer-related causes of death as the major cause of cancer-related mortality. Radiologists have long-standing methods for locating lung nodules in patients with lung cancer, such as computed tomography (CT) scans. Radiologists must manually review a significant amount of CT scan pictures, which makes the process time-consuming and prone to human error. Computer-aided diagnosis (CAD) systems have been created to help radiologists with their evaluations in order to overcome these difficulties. These systems make use of cutting-edge deep learning architectures. These CAD systems are designed to improve lung nodule diagnosis efficiency and accuracy. In this study, a bespoke convolutional neural network (CNN) with a dual attention mechanism was created, which was especially crafted to concentrate on the most important elements in images of lung nodules. The CNN model extracts informative features from the images, while the attention module incorporates both channel attention and spatial attention mechanisms to selectively highlight significant features. After the attention module, global average pooling is applied to summarize the spatial information. To evaluate the performance of the proposed model, extensive experiments were conducted using benchmark dataset of lung nodules. The results of these experiments demonstrated that our model surpasses recent models and achieves state-of-the-art accuracy in lung nodule detection and classification tasks.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Humanos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Redes Neurales de la Computación , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
3.
J Biomol Struct Dyn ; : 1-9, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064307

RESUMEN

The fibroblast growth factor receptor 3 (FGFR3) is warranted as a promising therapeutic target in bladder cancer as it is described in 75% of papillary bladder tumors. Considering this, the present study was conducted to use different approaches of computer-aided drug discovery (CADD) to identify the best binding compounds against the active pocket of FGFR3. Compared to control pyrimidine derivative, the study identified three promising lead structures; BDC_24037121, BDC_21200852, and BDC_21206757 with binding energy value of -14.80 kcal/mol, -12.22 kcal/mol, and -11.67 kcal/mol, respectively. The control molecule binding energy score was -9.85 kcal/mol. The compounds achieved deep pocket binding and produced balanced interactions of hydrogen bonds and van der Waals. The FGFR3 enzyme residues such as Leu478, Lys508, Glu556, Asn562, Asn622, and Asp635. The molecular dynamic (MD) simulation studies additionally validated the docked conformation stability with respect to FGFR3 with a mean root mean square deviation (RMSD) value of < 3 Å. The root mean square fluctuation (RMSF) complements the complexes structural stability and the residues showed less fluctuation in the presence of compounds. The Poisson-Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods revalidated compounds better binding and highlighted van der Waals energy to dominate the overall net energy. The docked stability was additionally confirmed by WaterSwap and AMBER normal mode entropy energy analyses. In a nutshell, the compounds shortlisted in this study are promising in term of theoretical binding affinity for FGFR3 but experimental validation is needed.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878068

RESUMEN

Following preliminary bioactivity testing, the fungal strain identified as Penicillium crysogenum was cultured in a modified Czapec Yeast Broth medium (CYB) for the production of antifungal compounds. Several chromatographic techniques including HPLC were used to purify the fungal metabolites from the crude extract. The mass determination of the purified compound was performed using Water's LCMS system while the structure of the compound was elucidated using 400 and 500 Varian NMR machines. The chemical name of the purified compound is (2 R, 4S) -2, 4-dimethyl-4-((E)-2-((3S, 4S)-2, 4, 5-trihydroxy-3-methoxy-4-phenyl-1, 2, 3, 4-tetrahydroquinolin-6-yl) vinyl) cyclohexanone with the chemical formula C26H31NO5 and exact mass of 437.2. Molecular docking predicted compound docking score with dihydrofolate reductase enzyme and lanosterol 14α-demethylase enzyme as -8.1 kcal/mol and -9.8 kcal/mol respectively. Further, the compounds showed stable binding mode with the enzymes and reported robust binding energies. After insilico analysis, the compound with mass 437 was tested for its antifungal potential in vitro against two pathogenic yeast species (i.e. Candida albicans and Candida glaberata) using the agar tube diffusion method. Using sterile di-methyl sulfoxide (DMSO) the compound was prepared in four dose concentrations (100, 250, 500, 1000 µg mL-1) and mixed with autoclaved semisolid Potato Dextrose Agar (PDA) medium in screw-capped test tubes labelled with the corresponding dose concentration. The fungal strains were inoculated on this medium and linear growth inhibition of the fungal strains was calculated using fluconazole as the control drug. The results from in vitro experiments were encouraging as at concentrations of 500 and 1000 µg mL-1 the compound inhibited the growth of C. albicans by 17% and 38% while 19% and 41% inhibition were recorded against C. glaberata. The compound showed antifungal activity in silico and in vitro against both the Candida species and can act as a potent antifungal candidate in the future upon further investigation.Communicated by Ramaswamy H. Sarma.

5.
Biomolecules ; 13(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671456

RESUMEN

Enhancers are sequences with short motifs that exhibit high positional variability and free scattering properties. Identification of these noncoding DNA fragments and their strength are extremely important because they play a key role in controlling gene regulation on a cellular basis. The identification of enhancers is more complex than that of other factors in the genome because they are freely scattered, and their location varies widely. In recent years, bioinformatics tools have enabled significant improvement in identifying this biological difficulty. Cell line-specific screening is not possible using these existing computational methods based solely on DNA sequences. DNA segment chromatin accessibility may provide useful information about its potential function in regulation, thereby identifying regulatory elements based on its chromatin accessibility. In chromatin, the entanglement structure allows positions far apart in the sequence to encounter each other, regardless of their proximity to the gene to be acted upon. Thus, identifying enhancers and assessing their strength is difficult and time-consuming. The goal of our work was to overcome these limitations by presenting a convolutional neural network (CNN) with attention-gated recurrent units (AttGRU) based on Deep Learning. It used a CNN and one-hot coding to build models, primarily to identify enhancers and secondarily to classify their strength. To test the performance of the proposed model, parallels were drawn between enhancer-CNNAttGRU and existing state-of-the-art methods to enable comparisons. The proposed model performed the best for predicting stage one and stage two enhancer sequences, as well as their strengths, in a cross-species analysis, achieving best accuracy values of 87.39% and 84.46%, respectively. Overall, the results showed that the proposed model provided comparable results to state-of-the-art models, highlighting its usefulness.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Elementos de Facilitación Genéticos/genética , Cromatina/genética , Biología Computacional/métodos , ADN/genética , ADN/química , Redes Neurales de la Computación
6.
BMC Microbiol ; 21(1): 322, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34798838

RESUMEN

PROBLEM BACKGROUND: Penicillin was the first and most famous fungal secondary metabolite used as broad spectrum antibiotic that revolutionarised pharmaceutical research and also saved millions of lives. The over optimistic belief in 1967 that sufficient antibiotics had been discovered to defeat infectious diseases was quickly crashed with the appearance of multidrug resistant (MDR) bacteria in 1990s. This has posed a serious threat to mankind. Although scientists are making efforts to synthesize and discover new antibiotics there are not enough new drugs in pharmaceutical pipeline to beat the pace at which MDR bacteria are emerging. In view of this there is an urgent and serious medical need for new bioactive compounds to be discovered to treat infections caused by MDR pathogens. The present study is aimed to investigate the antibacterial potential of Aspergillus flavus originated compounds that may act as drug leads to treat future infections. METHODOLOGY: Among the 6 isolated fungal strains from the rhizosphere of Mentha piperetta, one was processed for isolation of secondary metabolites on the basis of preliminary antibacterial testing. Observation of morphological and microscopic features helped in identification of the fungal strain as Aspergillus flavus. Potato Dextrose Agar (PDA) medium was used for fungal growth while Czapec Yeast Broth (CYB) medium was used for production of fungal metabolites. Column chromatography technique was utilized for purification of compound from crude fungal extract and the mass of the compound was determined using Liquid Chromatography Mass Spectrometry (LCMS) method. Structure elucidation of the pure compound was performed using 500 Varian Nuclear Magnetic Resonance (NMR) machine. Docking was performed using Glide SP algorithm. Agar well diffusion method was used to determine the invitro antibacterial potential of the compound against two MDR bacterial strains i.e. Staphylococcus aureus and Proteus vulgaris. For this a total of 4 dose concentrations i.e. (100, 250, 500, 1000 µg mL- 1) of the compound were prepared and applied to bacterial strains on Mueller Hinton agar using tetracycline as control. RESULTS: The chemical name of the purified compound from A. flavus was determined as (2E)-3-[(3S, 4R)-8-hydroxy-3, 4-dimethyl-1-oxo-3, 4-dihydro-1H-2- benzopyran-7-yl] prop-2-enoic acid with the formula C14H14O5 and exact mass of 262.08. The in-Silico analysis showed that this compound has the potential to inhibit the binding pocket of S. aureus TyrRS (1JII) with docking score of - 8.67 Kcal mole- 1. The results obtained from invitro experiments were encouraging as at 1000 µg mL- 1 the compound showed 58.8% inhibition against S. aureus and 28% inhibition against P. vulgaris. CONCLUSIONS: The pure compound with formula C14H14O5 and exact mass of 262 exhibited antibacterial potential both insilico and invitro against both Gram negative and Gram positive bacteria. The compound was more active against S. aureus in comparison to P. vulgaris. From the obtained results it is concluded that this compound can be used as potent antibacterial candidate but further studies will be needed prior to its use as antibiotic.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Aspergillus flavus/química , Aspergillus flavus/metabolismo , Antibacterianos/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/aislamiento & purificación , Farmacorresistencia Bacteriana , Mentha piperita/microbiología , Pruebas de Sensibilidad Microbiana , Proteus vulgaris/efectos de los fármacos , Proteus vulgaris/crecimiento & desarrollo , Metabolismo Secundario , Microbiología del Suelo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
7.
Nat Prod Res ; 34(18): 2642-2646, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30582365

RESUMEN

Using a dual culture antagonism assay, Aspergillus niger exhibited 51.5 ± 1.1% growth inhibition against Fusarium oxysporum f.sp. lycopersici, the wilt pathogen of tomato. For enhanced production of antifungal metabolites, nutrient optimization was performed and in vitro well-diffusion antifungal assays demonstrated that crude extract obtained from GPYB culture showed a maximum zone of inhibition (8.8 ± 0.4 mm) against the wilt pathogen, which is corroborated by the comparative LCMS profiles of the extracts from all three media i.e. GPYB, YEB and PDB. Two known compounds, Asperazine (m/z 665 [M + H]+) and Nigerone (m/z 571 [M + H]+), were isolated from A. niger and their antifungal activity is reported here for the first time. In MIC experiments, Asperazine and Nigerone inhibited the pathogen at 60 and 80 µg·mL-1 respectively. Molecular docking studies of Nigerone and Asperazine with F. oxysporum tomatinase showed five and six binding interactions respectively.


Asunto(s)
Antifúngicos/aislamiento & purificación , Aspergillus niger/química , Glicósido Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Antifúngicos/metabolismo , Antifúngicos/farmacología , Fusarium/enzimología , Indoles/metabolismo , Solanum lycopersicum/microbiología , Naftalenos/metabolismo , Piperazinas/metabolismo , Unión Proteica , Pironas/metabolismo
8.
Nat Prod Res ; 32(10): 1212-1215, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28494649

RESUMEN

In the quest for bioactive natural products of fungal origin, Aspergillus flavus was isolated from rhizosphere of Mentha piperita using Potato Dextrose Agar (PDA) and Czapec Yeast Broth (CYB) nutrient media for metabolites production. In total, three different metabolites were purified using HPLC/LCMS and the structures were established using 500 Varian NMR experiments. Further the isolated metabolites in different concentrations (10, 100, 1000 µg/mL) were tested for herbicidal activity using Completely Randomized design (CRD) against the seeds of Silybum marianum and Avena fatua which are major threats to wheat crop in Pakistan. Among the isolated metabolites, one compound was found active against the test weed species whose activity is reported in the present work. The chemical name of the compound is 2-(1, 4-dihydroxybutan-2-yl)-1, 3-dihydroxy-6, 8-dimethoxyanthracene-9, 10(4aH, 9aH)-dione with mass of 388. Results showed that all seeds germinated in control treatment; however, with the metabolite treated, the growth was retarded to different levels in all parts of the weeds. At a dose of 1000 µg/mL of the pure compound, 100% seeds of S. marianum and 60% seeds of A. fatua were inhibited. Interestingly, the pure compound exhibited less inhibition of 10% towards the seeds of common wheat (Triticum aestivum).


Asunto(s)
Antracenos/farmacología , Aspergillus flavus/química , Herbicidas/farmacología , Antracenos/química , Antracenos/aislamiento & purificación , Aspergillus flavus/aislamiento & purificación , Avena/efectos de los fármacos , Productos Agrícolas , Germinación , Herbicidas/química , Herbicidas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Mentha piperita/microbiología , Silybum marianum/efectos de los fármacos , Estructura Molecular , Pakistán , Malezas/efectos de los fármacos , Rizosfera , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...