Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400045, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516805

RESUMEN

A general method for chemo- and diastereoselective modification of anticancer natural product arglabin with nitrogen- and carbon-centered pronucleophiles under the influence of nucleophilic phosphine catalysts was developed. The locked s-cis-geometry of α-methylene-γ-butyrolactone moiety of arglabin favors for the additional stabilization of the zwitterionic intermediate by electrostatic interaction between phosphonium and enolate oxygen centers, leading to the unprecedentedly high efficiency of the phosphine-catalyzed Michael additions to this sesquiterpene lactone. Using n-Bu3P as the catalyst, pyrazole, phthalimide, 2-oxazolidinone, 4-quinazolinone, uracil, thymine, cytosine, and adenine adducts of arglabin were obtained. The n-Bu3P-catalyzed reaction of arglabin with active methylene compounds resulted in the predominant formation of bisadducts bearing a new quaternary carbon center. All synthesized Michael adducts and previously obtained phosphorylated arglabin derivatives were evaluated in vitro against eleven cancer and two normal cell lines, and the results were compared to those of natural arglabin and its dimethylamino hydrochloride salt currently used as anticancer drugs. 2-Oxazolidinone, uracil, diethyl malonate, dibenzyl phosphonate, and diethyl cyanomethylphosphonate derivatives of arglabin exhibited more potent antiproliferative activity towards several cancer cell lines and lower cytotoxicity towards normal cell lines in comparison to the reference compounds, indicating the feasibility of the developed methodology for the design of novel anticancer drugs with better therapeutic potential.

2.
Org Biomol Chem ; 22(8): 1629-1633, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38318979

RESUMEN

The divergent synthesis of benzo[e]-1,2-oxaphosphinines or benzo[d]-1,2-oxaphospholenes along with spirocyclic quasiphosphonium compounds based on 2-alkenylphenols and phosphorus(III/V) chlorides is presented. The reaction is condition-dependent and determined by the biphility of the phosphorus(III) derivative and the dual reactivity of 2-alkenylphenol. The procedures are applicable for obtaining benzo[e]-1,2-oxaphosphinines substituted at position 4 and disubstituted at positions 4 and 5 as well as 3,3-disubstituted benzo[d]-1,2-oxaphospholenes with good to high yields.

3.
J Org Chem ; 88(16): 11954-11967, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37540578

RESUMEN

The kinetic data indicate that the addition of tertiary phosphines to α-methylene lactones in acetic acid is strongly accelerated in comparison to the reactions of related open-chain esters. Six-membered α-methylene-δ-valerolactone exhibited a more pronounced rate increase than five-membered α-methylene-γ-butyrolactone. The use of α-methylene-γ-butyrolactam as a nitrogen analogue of α-methylene-γ-butyrolactone resulted in a total loss of the reaction acceleration. The observed reactivities were rationalized by DFT calculations at the RwB97XD/6-31+G(d,p) level of theory, showing that the intramolecular interaction between phosphonium and enolate oxygen centers provided by the locked s-cis-geometry of the heterocycles plays an important role in the stabilization of intermediate zwitterions. The reactivity is also controlled by the conformational flexibility of the heterocycle. The geometries of five-membered and, especially, six-membered lactone cycles are slightly changed upon the nucleophilic attack of phosphine, leading to the stabilizing stereoelectronic effect by the Ρ···Ο interaction. The addition of phosphine to α-methylene-γ-butyrolactam significantly distorts the initial geometry of the heterocycle, making the nucleophilic attack unfavorable. The application of the stereoelectronic effect to enhance the efficiency of the phosphine-catalyzed Michael and Pudovik reactions of α-methylene lactones was demonstrated.

4.
Angew Chem Int Ed Engl ; 61(47): e202210973, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36200566

RESUMEN

Transition-metal mediated white phosphorus activation is of high interest as an ecological alternative to P4 chlorination pathway to the practically useful phosphorus products. Herein, we report a facile approach for P4 activation, transformation and subsequent functionalization using cobalt complexes bearing PNP ligands. The use of N,N-bis(diphenylphosphino)amine as a ligand allows one to transform P4 tetrahedron into a zig-zag chain with the formation of complex [Co(Ph2 PNHP(Ph2 )PPPPP(Ph2 )NHPPh2 )]BF4 (4). The presence of organic substituent at nitrogen atom in PNP ligand enables one to obtain complexes with η1 -coordinated P4 molecule, which indicates a crucial role of N-H bond in transformation of white phosphorus tetrahedron. Additionally, complex 4 can readily be functionalized by means of the reaction with Ph2 PCl leading to the formation of a new complex bearing unique P9 -ligand. The obtained results provide opportunities for facile construction of new polyphosphorus ligands in the coordination sphere of transition metal complexes.

5.
Bioorg Chem ; 127: 106030, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35870414

RESUMEN

Here we report the synthesis, in vitro antimicrobial activity, preliminary toxicity and mechanism study of a new series of 2-(2-hydroxyaryl)alkenylphosphonium salts with the variation of phosphonium moiety obtained by a two-step synthetic method from phosphine oxides. The salts showed pronounced activity against Gram-positive bacteria, including MRSA strains, and some fungi. Mechanism of action against S. aureus was studied by CV test, TEM and proteomic assay. No cell wall integrity loss was observed while proteomic assay results suggested interference in different metabolic processes of S. aureus. For this series, lipophilicity was determined as a key factor for the inhibition of Gram-positive bacteria growth and S. aureus killing. Biological properties of methylated derivatives were notably different with manifested action against Gram-negative bacteria.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sales (Química) , Antibacterianos/farmacología , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Proteómica , Staphylococcus aureus , Relación Estructura-Actividad
6.
Chem Commun (Camb) ; 57(68): 8516-8519, 2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34352057

RESUMEN

The Kukhtin-Ramirez reaction of 2-(3-oxo-3-phenyl)ethoxy-benzo[d]-1,3,2-dioxaphospholes with perfluorodiacetyl was monitored by NMR methods. To our surprise the initial stage involved a kinetically controlled [4+4]-cycloaddition with the formation of a cage phosphorane containing a 2',5',8',9'-tetraoxa-2λ5-phosphaspiro[benzo[d][1,3,2]dioxaphosphole-2,1'-bicyclo[4.2.1]nonan]-3'-ene (compound 5) scaffold. Intermediate 5 then converts to spirophosphorane-4',5'-bis(trifluoromethyl)-2λ5-spiro[benzo[d] [1,3,2]dioxaphosphole-2-yl-2,2'-[1,3,2] dioxaphosphole (compound 4). Compound 4 further rearranges into a cage phosphorane derivative containing a [2,5]epoxybenzo[d][1,3,6,2]trioxaphosphocine] (compound 3) backbone.

7.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494201

RESUMEN

Reaction of heterometallic cubane-type cluster complexes-[Mo3{Pd(dba)}S4Cl3(dbbpy)3]PF6, [Mo3{Pd(tu)}S4Cl3(dbbpy)3]Cl and [Mo3{Pd(dba)}S4(acac)3(py)3]PF6, where dba-dibenzylideneacetone, dbbpy-4,4'-di-tert-butyl-2,2'-bipyridine, tu-thiourea, acac-acetylacetonate, py-pyridine, with white phosphorus (P4) in the presence of water leads to the formation of phosphorous acid H3PO3 as the major product. The crucial role of the Pd atom in the cluster core {Mo3PdS4} has been established in the hydrolytic activation of P4 molecule. The main intermediate of the process, the cluster complex [Mo3{PdP(OH)3}S4Cl3(dbbpy)3]+ with coordinated P(OH)3 molecule and phosphine PH3, have been detected by 31P NMR spectroscopy in the reaction mixture.


Asunto(s)
Molibdeno/química , Compuestos Organometálicos/química , Paladio/química , Fósforo/química , Hidrólisis
8.
Molecules ; 25(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271872

RESUMEN

The design of new dual-function inhibitors simultaneously preventing hydrate formation and corrosion is a relevant issue for the oil and gas industry. The structure-property relationship for a promising class of hybrid inhibitors based on waterborne polyurethanes (WPU) was studied in this work. Variation of diethanolamines differing in the size and branching of N-substituents (methyl, n-butyl, and tert-butyl), as well as the amount of these groups, allowed the structure of polymer molecules to be preset during their synthesis. To assess the hydrate and corrosion inhibition efficiency of developed reagents pressurized rocking cells, electrochemistry and weight-loss techniques were used. A distinct effect of these variables altering the hydrophobicity of obtained compounds on their target properties was revealed. Polymers with increased content of diethanolamine fragments with n- or tert-butyl as N-substituent (WPU-6 and WPU-7, respectively) worked as dual-function inhibitors, showing nearly the same efficiency as commercial ones at low concentration (0.25 wt%), with the branched one (tert-butyl; WPU-7) turning out to be more effective as a corrosion inhibitor. Commercial kinetic hydrate inhibitor Luvicap 55 W and corrosion inhibitor Armohib CI-28 were taken as reference samples. Preliminary study reveals that WPU-6 and WPU-7 polyurethanes as well as Luvicap 55 W are all poorly biodegradable compounds; BODt/CODcr (ratio of Biochemical oxygen demand and Chemical oxygen demand) value is 0.234 and 0.294 for WPU-6 and WPU-7, respectively, compared to 0.251 for commercial kinetic hydrate inhibitor Luvicap 55 W. Since the obtained polyurethanes have a bifunctional effect and operate at low enough concentrations, their employment is expected to reduce both operating costs and environmental impact.


Asunto(s)
Materiales Biocompatibles/química , Gases/química , Interacciones Hidrofóbicas e Hidrofílicas , Poliuretanos/química , Agua/química , Corrosión , Reología
9.
Amino Acids ; 52(5): 811-821, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32372392

RESUMEN

The kinetics of oligopeptides formation in the flow systems glycine-sodium trimetaphosphate-imidazole/N-methylimidazole at thermocyclic regime has been investigated by HPLC and 31P NMR methods in the ranges of temperature from 45 to 90 °C and pH from 8.5 to 11.5. Detailed reaction mechanisms have been proposed and justified by quantum chemical calculations using DFT method at the CAM-B3LYP/TZVP level with accounting solvent effect by the C-PCM model. A new imidazole catalysis mechanism by which imidazole reacts with cyclic N,O-phosphoryl glycine giving N-imidazolyl-O-glycyl phosphate as a key intermediate was proposed and validated. It is emphasized that while in the absence of imidazoles, prebiotic activation of amino acids occurs at the N-terminus, in the presence of imidazoles it shifts to the O-terminus. This means that in the peptide elongation N-imidazolyl-O-aminoacyl phosphates play in prebiotic systems the outstanding role similar to that of aminoacyl adenylates formed at the ATP and aminoacyl-tRNA synthetases presence in biosystems. The new crucial role of imidazoles in prebiotic evolution has been noticed. The systems used and modes of their conversion can be good models for prebiotic peptide syntheses in a flow thermocyclic regime.


Asunto(s)
Glicina/química , Imidazoles/química , Oligopéptidos/síntesis química , Biosíntesis de Péptidos , Polifosfatos/química , Catálisis , Concentración de Iones de Hidrógeno , Cinética
10.
J Pept Sci ; 25(8): e3177, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31317614

RESUMEN

Thermal treatment of short-chain oligopeptides is able to initiate the process of their self-assembly with the formation of organic nanostructures with unique properties. On the other hand, heating can lead to a chemical reaction with the formation of new substances with specific properties and ability to form structures with different morphology. Therefore, in order to have a desired process, researcher needs to find its temperature range. In the present work, cyclization of L -isoleucyl-L -alanine dipeptide in the solid state upon heating was studied. Kinetic parameters of this reaction were estimated within the approaches of the nonisothermal kinetics. The correlation between side chain structure of dipeptides and temperature of their cyclization in the solid state was found for the first time. This correlation may be used to predict the temperature, at which dipeptide self-assembly changes to chemical reaction. The differences in self-assembly of linear and cyclic dipeptides were demonstrated using atomic force microscopy. The effect of dipeptide concentration in a source solution and an organic solvent used on self-assembly of dipeptides was shown. The new information obtained on the thermal properties and self-assembly of linear and cyclic forms of L -isoleucyl-L -alanine may be useful for the design of new nanomaterials based on oligopeptides, as well as for the synthesis of cyclic oligopeptides.


Asunto(s)
Alanina/química , Dipéptidos/síntesis química , Isoleucina/química , Temperatura , Ciclización , Dipéptidos/química , Cromatografía de Gases y Espectrometría de Masas , Cinética , Conformación Molecular
11.
J Phys Chem B ; 121(36): 8603-8610, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28820260

RESUMEN

Thermal treatment of oligopeptides is one of the methods for synthesis of organic nanostructures. However, heating may lead not only to self-assembly of the initial molecules, but also to chemical reactions resulting in the formation of new unexpected nanostructures or change in the properties of the existing ones. In the present work, the reaction of cyclization of dipeptide l-leucyl-l-leucine in solid state under heating was studied. The change in morphology of dipeptide thin film and formation of nanostructures after heating was visualized using atomic force microscopy. This method also was used for demonstration of differences in self-assembly of linear and cyclic dipeptides. The chemical structure of reaction product was characterized by NMR spectrometry, FTIR spectroscopy and GC-MS analysis. Kinetic parameters of cyclization were estimated within the approaches of the nonisothermal kinetics ("model-free" kinetics and linear regression methods for detection of topochemical equation). The results of present work are useful for explanation the changes in the properties of nanostructures based on short-chain oligopeptides, notably leucyl-leucine, after thermal treatment, as well as for the synthesis of cyclic oligopeptides.


Asunto(s)
Dipéptidos/química , Sustancias Macromoleculares/química , Ciclización , Calefacción , Enlace de Hidrógeno , Cinética , Propiedades de Superficie
12.
Chem Commun (Camb) ; (37): 3897-9, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17268663

RESUMEN

A solid powder of hydrogen bonded dimers of a tetraurea calix[4]arene is able to exchange the encapsulated guest in contact with the vapor of a second guest. The molecules of a guest-free powder obtained from a polar solvent cannot rearrange in the solid phase to form new guest-filled capsules under these conditions.


Asunto(s)
Calixarenos/química , Fenoles/química , Urea/análogos & derivados , Dimerización , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...