Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Andrologia ; 50(1)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28370451

RESUMEN

This study was conducted to survey the protective effect of pre-treatment with Persian honey during post-ischaemia reperfusion on ischaemia-reperfusion (IR)-induced testis injury. Animals were divided into four groups of IR, honey + ischaemia- reperfusion (HIR), vitamin C + ischaemia- reperfusion (VIR) and carbohydrates + ischaemia- reperfusion (CIR). The testes were examined for spermatogenesis index. Detection of single- and double-stranded DNA breaks at the early stages of apoptosis was performed. Total serum concentration of FSH, LH and testosterone was measured using ELISA. All data were expressed as mean ± SD in each group, and significance was set at p ≤ .05. Spermatogenesis index was significant in the HIR group (p < .001). Serum levels of FSH and LH were significantly higher in the CIR and HIR groups. Serum levels of testosterone were significantly higher in VIR and HIR groups. Apoptotic cells in IR and CIR groups increased significantly statistically (p < .001), while in HIR and VIR groups, the number of apoptotic cells decreased and the positive cells of TUNEL staining were detected in spermatocytes and spermatid. The present study indicates that honey decreases the cellular damage and apoptosis during testicular I/R injury, with significant protective effects on reproductive hormone production.


Asunto(s)
Miel , Daño por Reperfusión/prevención & control , Espermatogénesis/efectos de los fármacos , Testículo/irrigación sanguínea , Animales , Apoptosis/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Masculino , Ratas , Daño por Reperfusión/sangre , Espermátides/efectos de los fármacos , Espermatocitos/efectos de los fármacos , Testículo/efectos de los fármacos , Testosterona/sangre
2.
Biomed Pharmacother ; 83: 865-875, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27505864

RESUMEN

Recently, we have published a pioneering work on green biosynthesis and complete characterization of gold and core shell silver-gold nanoparticles (AuNPs and Ag@AuNPs). Herein, the so obtained nanoparticles are assessed for their antidiabetic activity in streptozotocin-induced diabetic rats. Thus, sixty-four male albino rats were divided into eight groups: control untreated; diabetic rats; diabetic rats received standard drug; diabetic rats received carrier only; diabetic rats received 0.5ml AuNPs; diabetic rats received 1ml AuNPs; diabetic rats received 0.5ml Ag@AuNPs and diabetic rats received 1ml Ag@AuNPs for twenty-one days. Results revealed that diabetic rats treated with AuNPs or Ag@AuNPs restored normal glucose level. In particular, Ag@AuNPs was found to significantly induce a reduction in blood glucose and restore both the high serum insulin level and glucokinase activity compared to the control normal rats. The results obtained disclose the effectual role of Ag@AuNPs in reducing the lipid profile, an anti-inflammatory effect in diabetic rats assessed using inflammatory markers IL-α and C-reactive protein (CRP). Histopathological examination of diabetic rats signifies distortion in the arrangement of cells around the central vein, inflammatory cells, pyknotic and apoptotic nuclei. Kidney of diabetic rat appears with vacuolation and pyknotic nuclei of some tubules. On the other hand, the liver of diabetic rat treated with Ag@AuNPs displayed normal hepatic cells with only few necrosis of hepatocytes. Ag@AuNPs restored the increased number of caspase-3 stained cells in the liver and kidney tissue in diabetic rats. In conclusion, Ag@AuNPs was observed to improve diabetic condition by limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats which subsequently evoke the potential impact of AuNPs as a cost effective therapeutic cure in diabetic treatments and its complications.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Oro/química , Hipoglucemiantes/uso terapéutico , Nanopartículas del Metal/química , Plata/química , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Caspasa 3/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Ayuno/sangre , Hipoglucemiantes/farmacología , Inflamación/patología , Insulina/sangre , Riñón/efectos de los fármacos , Riñón/patología , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Nanopartículas del Metal/ultraestructura , Óxido Nítrico/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas , Espectrofotometría Ultravioleta , Estreptozocina , Superóxido Dismutasa/metabolismo
3.
Biomacromolecules ; 5(4): 1422-7, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15244460

RESUMEN

Bioresponsive poly(amidoamine)s (PAA)s are currently under development as endosomolytic polymers for intracellular delivery of proteins and genes. Here for the first time, small-angle neutron scattering (SANS) is used to systematically investigate the pH-dependent conformational change of an endosomolytic polymer, the PAA ISA 23. The radius of gyration of the ISA23 was determined as a function of pH and counterion, the aim being to correlate changes in polymer conformation with membrane activity assessed using a rat red blood cell haemolysis assay. With decreasing pH, the ISA23 radius of gyration increased to a maximum (R(g) approximately 80 A) around pH = 3, before subsequently decreasing once more. At high pH and therefore high ionic strengths, the polymer is negatively charged and adopts a rather compact structure (R(g) approximately 20 A), presumably with the dissociated carboxylic groups on the exterior of the polymer coil. At low pH, the coil again collapses (R(g) < 20 A), presumably due to the effects of the high ionic strength. It is concluded that the nature of the salt form has no direct bearing on the size of the polymer coil, but it does indirectly determine the prevailing pH and, hence, polymer conformation. Pulsed-gradient spin-echo NMR measurements were in good agreement with the SANS estimates of the radius of gyration, although ISA23 polydispersity does complicate the data interpretation/comparison. These results support the proposed mode of action of PAAs, namely a coil expansion on passing from a neutral pH (extracellular) to an acidic pH (endosomal and lysosomal) environments. The results do, however, suggest that the charge on the polymer shows a closer correlation with the haemolysis activity rather than the polymer conformation.


Asunto(s)
Endosomas/efectos de los fármacos , Piperazinas/química , Poliaminas/química , Polímeros/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Microscopía Electrónica de Rastreo/métodos , Conformación Molecular , Peso Molecular , Difracción de Neutrones , Concentración Osmolar , Poliaminas/farmacología , Polímeros/farmacología , Ratas
4.
Eur J Clin Microbiol Infect Dis ; 22(4): 222-7, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12687414

RESUMEN

Q fever is a worldwide-occurring zoonosis caused by Coxiella burnetii. There are various clinical manifestations of acute Q fever, of which acute cholecystitis is a very rare clinical presentation. This study reports seven cases of acute cholecystitis associated with Coxiella burnetii and reviews two other cases from the literature. All patients were admitted to hospital for fever and abdominal pain in the right upper quadrant. Abdominal echography showed a distended gallbladder with biliary sludge without concrements in eight cases and with a single stone in one case. Diagnosis was made by specific serological investigation (microimmunofluorescence assay) for Coxiella burnetii. All nine patients were cured, six after laparoscopic cholecystectomy and three with antibiotics only. Histological examination of the gallbladders showed inflammation in five cases, although Coxiella burnetii was not detected by immunohistochemistry. The results show that laboratory investigations in patients admitted to hospital for symptoms consistent with acute acalculous cholecystitis should include a systematic search for Coxiella burnetii.


Asunto(s)
Colecistitis/diagnóstico , Fiebre Q/complicaciones , Enfermedad Aguda , Adulto , Anciano , Antibacterianos/uso terapéutico , Colecistitis/tratamiento farmacológico , Colecistitis/microbiología , Colecistitis/cirugía , Coxiella burnetii/aislamiento & purificación , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
J Clin Invest ; 108(3): 371-81, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11489930

RESUMEN

Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular compartment to the cell surface; this phenomenon is defective in type 2 diabetes. Here we examine the involvement of actin filaments in GLUT4 translocation and their possible defects in insulin resistance, using L6 myotubes expressing myc-tagged GLUT4. Insulin caused membrane ruffling, a dynamic distortion of the myotube dorsal surface. Fluorescence microscopy and immunogold staining of surface GLUT4myc coupled to backscatter electron microscopy revealed a high density of this protein in membrane ruffles. The t-SNAREs syntaxin4 and SNAP-23 were also abundant in these regions. Below the membrane, GLUT4 and the vesicular protein VAMP2, but not VAMP3, colocalized with the actin structures supporting the membrane ruffles. GLUT4myc externalization and membrane ruffles were reduced by jasplakinolide and by swinholide-A, drugs that affect actin filament stability and prevent actin branching, respectively. Insulin resistance generated by prolonged (24 hours) exposure of myotubes to high glucose and insulin diminished the acute insulin-dependent remodeling of cortical actin and GLUT4myc translocation, reminiscent of the effect of swinholide-A. We propose that GLUT4 vesicle incorporation into the plasma membrane involves insulin-dependent cortical actin remodeling and that defective actin remodeling contributes to insulin resistance.


Asunto(s)
Actinas/metabolismo , Insulina/farmacología , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Actinas/ultraestructura , Animales , Transporte Biológico Activo/efectos de los fármacos , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Glucosa/farmacología , Transportador de Glucosa de Tipo 4 , Resistencia a la Insulina , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Músculo Esquelético/ultraestructura , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Ratas , Proteína 3 de Membrana Asociada a Vesículas
6.
Biochem Biophys Res Commun ; 285(4): 1066-70, 2001 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-11467861

RESUMEN

2,4-dinitrophenol (DNP) compromises ATP production within the cell by disrupting the mitochondrial electron transport chain. The resulting loss of ATP leads to an increase in glucose uptake for anaerobic generation of ATP. In L6 skeletal muscle cells, DNP increases the rate of glucose uptake by twofold. We previously showed that DNP increases cell surface levels of glucose transporter 4 (GLUT4) and hexose uptake via a Ca2+-sensitive and conventional protein kinase C (cPKC)-dependent mechanism. Recently, 5' AMP-activated protein kinase (AMPK) has been proposed to mediate the stimulation of glucose uptake by energy stressors such as exercise and hypoxia. Changes in Ca2+ and cPKC have also been invoked in the stimulation of glucose uptake by exercise and hypoxia. Here we examine whether changes in cytosolic Ca2+ or cPKC lead to activation of AMPK. We show that treatment of L6 cells with DNP (0.5 mM) or hyperosmolar stress (mannitol, 0.6 M) increased AMPK activity by 3.5-fold. AMPK activation peaked by 10-15 min prior to maximal stimulation of glucose uptake. Intracellular Ca2+ chelation and cPKC inhibition prior to treatment with DNP and hyperosmolarity significantly reduced cell surface GLUT4 levels and hexose uptake but had no effect on AMPK activation. These results illustrate a break in the relationship between AMPK activation and glucose uptake in skeletal muscle cells. Activation of AMPK does not suffice to stimulate glucose uptake in response to DNP and hyperosmolarity.


Asunto(s)
Glucosa/metabolismo , Mitocondrias Musculares/metabolismo , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , 2,4-Dinitrofenol/farmacología , Proteínas Quinasas Activadas por AMP , Adaptación Biológica , Animales , Biomarcadores de Tumor , Calcio/metabolismo , Metabolismo Energético , Activación Enzimática , Mitocondrias Musculares/efectos de los fármacos , Presión Osmótica , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Desacopladores/farmacología
7.
Mol Biol Cell ; 11(7): 2403-17, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10888677

RESUMEN

Like neuronal synaptic vesicles, intracellular GLUT4-containing vesicles must dock and fuse with the plasma membrane, thereby facilitating insulin-regulated glucose uptake into muscle and fat cells. GLUT4 colocalizes in part with the vesicle SNAREs VAMP2 and VAMP3. In this study, we used a single-cell fluorescence-based assay to compare the functional involvement of VAMP2 and VAMP3 in GLUT4 translocation. Transient transfection of proteolytically active tetanus toxin light chain cleaved both VAMP2 and VAMP3 proteins in L6 myoblasts stably expressing exofacially myc-tagged GLUT4 protein and inhibited insulin-stimulated GLUT4 translocation. Tetanus toxin also caused accumulation of the remaining C-terminal VAMP2 and VAMP3 portions in Golgi elements. This behavior was exclusive to these proteins, because the localization of intracellular myc-tagged GLUT4 protein was not affected by the toxin. Upon cotransfection of tetanus toxin with individual vesicle SNARE constructs, only toxin-resistant VAMP2 rescued the inhibition of insulin-dependent GLUT4 translocation by tetanus toxin. Moreover, insulin caused a cortical actin filament reorganization in which GLUT4 and VAMP2, but not VAMP3, were clustered. We propose that VAMP2 is a resident protein of the insulin-sensitive GLUT4 compartment and that the integrity of this protein is required for GLUT4 vesicle incorporation into the cell surface in response to insulin.


Asunto(s)
Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Actinas/metabolismo , Animales , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4 , Insulina/farmacología , Proteínas de Transporte de Monosacáridos/genética , Músculo Esquelético/citología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas R-SNARE , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Toxina Tetánica/metabolismo , Proteína 3 de Membrana Asociada a Vesículas
8.
J Cell Sci ; 113 Pt 2: 279-90, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10633079

RESUMEN

We examined the temporal reorganization of actin microfilaments by insulin and its participation in the localization of signaling molecules and glucose transporters in L6 myotubes expressing myc-tagged glucose transporter 4 (GLUT4myc). Scanning electron microscopy revealed a dynamic distortion of the dorsal cell surface (membrane ruffles) upon insulin treatment. In unstimulated cells, phalloidin-labeled actin filaments ran parallel to the longitudinal axis of the cell. Immunostaining of the p85 regulatory subunit of phosphatidylinositol 3-kinase was diffusely punctate, and GLUT4myc was perinuclear. After 3 minutes of insulin treatment, actin reorganized to form structures; these structures protruded from the dorsal surface of the myotubes by 10 minutes and condensed in the myoplasm into less prominent foci at 30 minutes. The p85 polypeptide colocalized with these structures at all time points. Actin remodeling and p85 relocalization to actin structures were prevented by cytochalasin D or latrunculin B. GLUT4myc recruitment into the actin-rich projections was also observed, but only after 10 minutes of insulin treatment. Irrespective of insulin stimulation, the majority of p85 and a portion (45%) of GLUT4 were recovered in the Triton X-100-insoluble material that was also enriched with actin. In contrast, vp165, a transmembrane aminopeptidase that morphologically colocalized with GLUT4 vesicles, was fully soluble in Triton X-100 extracts of both insulin-treated and control myotubes. Transient transfection of dominant inhibitory Rac1 (N17) into L6 myotubes prevented formation of dorsal actin structures and blocked insulin-induced GLUT4myc translocation to the cell surface. We propose that insulin-dependent formation of actin structures facilitates the association of PI3-K (p85) with GLUT4 vesicles and, potentially, the arrival of GLUT4 at the cell surface.


Asunto(s)
Actinas/metabolismo , Insulina/farmacología , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Músculos/efectos de los fármacos , Músculos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Transporte Biológico Activo , Línea Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Transportador de Glucosa de Tipo 4 , Modelos Biológicos , Músculos/citología , Orgánulos/metabolismo , Fosfatidilinositol 3-Quinasas/química , Ratas , Proteínas de Unión al GTP rac/metabolismo
9.
Am J Physiol ; 275(6): C1487-97, 1998 12.
Artículo en Inglés | MEDLINE | ID: mdl-9843710

RESUMEN

2,4-Dinitrophenol (DNP) uncouples the mitochondrial oxidative chain from ATP production, preventing oxidative metabolism. The consequent increase in energy demand is, however, contested by cells increasing glucose uptake to produce ATP via glycolysis. In L6 skeletal muscle cells, DNP rapidly doubles glucose transport, reminiscent of the effect of insulin. However, glucose transport stimulation by DNP does not require insulin receptor substrate-1 phosphorylation and is wortmannin insensitive. We report here that, unlike insulin, DNP does not activate phosphatidylinositol 3-kinase, protein kinase B/Akt, or p70 S6 kinase. However, chelation of intra- and extracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid-AM in conjunction with EGTA inhibited DNP-stimulated glucose uptake by 78.9 +/- 3.5%. Because Ca2+-sensitive, conventional protein kinase C (cPKC) can activate glucose transport in L6 muscle cells, we examined whether cPKC may be translocated and activated in response to DNP in L6 myotubes. Acute DNP treatment led to translocation of cPKCs to plasma membrane. cPKC immunoprecipitated from plasma membranes exhibited a twofold increase in kinase activity in response to DNP. Overnight treatment with 4-phorbol 12-myristate 13-acetate downregulated cPKC isoforms alpha, beta, and gamma and partially inhibited (45.0 +/- 3.6%) DNP- but not insulin-stimulated glucose uptake. Consistent with this, the PKC inhibitor bisindolylmaleimide I blocked PKC enzyme activity at the plasma membrane (100%) and inhibited DNP-stimulated 2-[3H]deoxyglucose uptake (61.2 +/- 2.4%) with no effect on the stimulation of glucose transport by insulin. Finally, the selective PKC-beta inhibitor LY-379196 partially inhibited DNP effects on glucose uptake (66.7 +/- 1.6%). The results suggest interfering with mitochondrial ATP production acts on a signal transduction pathway independent from that of insulin and partly mediated by Ca2+ and cPKCs, of which PKC-beta likely plays a significant role.


Asunto(s)
Calcio/fisiología , Citosol/metabolismo , Glucosa/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas Musculares , Proteína Quinasa C/fisiología , Desacopladores/farmacología , 2,4-Dinitrofenol/farmacología , 3-O-Metilglucosa/farmacocinética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Línea Celular , Transportador de Glucosa de Tipo 4 , Insulina/fisiología , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Monosacáridos/farmacocinética , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Biochem J ; 333 ( Pt 3): 713-8, 1998 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-9677332

RESUMEN

L6 muscle cells survive long-term (18 h) disruption of oxidative phosphorylation by the mitochondrial uncoupler 2,4-dinitrophenol (DNP) because, in response to this metabolic stress, they increase their rate of glucose transport. This response is associated with an elevation of the protein content of glucose transporter isoforms GLUT3 and GLUT1, but not GLUT4. Previously we have reported that the rise in GLUT1 expression is likely to be a result of de novo biosynthesis of the transporter, since the uncoupler increases GLUT1 mRNA levels. Unlike GLUT1, very little is known about how interfering with mitochondrial ATP production regulates GLUT3 protein expression. Here we examine the mechanisms employed by DNP to increase GLUT3 protein content and glucose uptake in L6 muscle cells. We report that, in contrast with GLUT1, continuous exposure to DNP had no effect on GLUT3 mRNA levels. DNP-stimulated glucose transport was unaffected by the protein-synthesis inhibitor cycloheximide. The increase in GLUT3 protein mediated by DNP was also insensitive to cycloheximide, paralleling the response of glucose uptake, whereas the rise in GLUT1 protein levels was blocked by the inhibitor. The GLUT3 glucose transporter may therefore provide the majority of the glucose transport stimulation by DNP, despite elevated levels of GLUT1 protein. The half-lives of GLUT3 and GLUT1 proteins in L6 myotubes were determined to be about 15 h and 6 h respectively. DNP prolonged the half-life of both proteins. After 24 h of DNP treatment, 88% of GLUT3 protein and 57% of GLUT1 protein had not turned over, compared with 25% in untreated cells. We conclude that the long-term stimulation of glucose transport by DNP arises from an elevation of GLUT3 protein content associated with an increase in GLUT3 protein half-life. These findings suggest that disruption of the oxidative chain of L6 muscle cells leads to an adaptive response of glucose transport that is distinct from the insulin response, involving specific glucose transporter isoforms that are regulated by different mechanisms.


Asunto(s)
Metabolismo Energético , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas del Tejido Nervioso , 2,4-Dinitrofenol/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Cicloheximida/farmacología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 3 , Semivida , Cinética , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/efectos de los fármacos , Músculos/citología , Músculos/metabolismo , Procesamiento Proteico-Postraduccional , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/metabolismo , Ratas , Desacopladores/farmacología
11.
FEBS Lett ; 427(2): 193-7, 1998 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-9607310

RESUMEN

We report a rapid and sensitive colorimetric approach to quantitate the amount of glucose transporters exposed at the surface of intact cells, using L6 muscle cells expressing GLUT4 containing an exofacial myc epitope. Unstimulated cells exposed to the surface 5 fmol GLUT4myc per mg protein. This value increased to 10 fmol/mg protein in response to insulin as 2-deoxyglucose (10 microM) uptake doubled. The results are substantiated by immunofluorescent detection of GLUT4myc in unpermeabilized cells and by subcellular fractionation. We further show that wortmannin and the cytoskeleton disruptors cytochalasin D and latrunculin B completely blocked these insulin effects. The rapid quantitative assay described here could be of high value to study insulin signals and to screen for potential anti-diabetic drugs.


Asunto(s)
Técnicas para Inmunoenzimas , Insulina/farmacología , Proteínas de Transporte de Monosacáridos/análisis , Proteínas Musculares , Músculo Esquelético/química , Androstadienos/farmacología , Animales , Transporte Biológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Fraccionamiento Celular , Línea Celular , Colorimetría/métodos , Citocalasina D/farmacología , Desoxiglucosa/metabolismo , Inhibidores Enzimáticos/farmacología , Transportador de Glucosa de Tipo 4 , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Recombinantes de Fusión/metabolismo , Tiazoles/farmacología , Tiazolidinas , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...