Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 270: 109460, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35640408

RESUMEN

Histophilus somni is a prevalent commensal organism of the upper respiratory tract of cattle and a major causative agent of bovine respiratory disease (BRD) and other syndromes including myocarditis and infectious thromboembolic meningoencephalitis. This study investigated the antimicrobial susceptibility and phylogenetic relationships of H. somni isolates obtained from lung, heart, and other tissues at post-mortem as well as nasal mucosa swabs from cases of BRD in Australian feedlots (2004-2019). Broth microdilution Minimal Inhibitory Concentration (MIC) assays were determined for 19 antimicrobials using three different media (CLSI approved Veterinary Fastidious Medium [VFM], Mueller-Hinton fastidious broth medium supplemented with yeast extract [MHF-Y] and Columbia Broth [CB] supplemented with 5% lysed horse blood). For all antimicrobials, MICs obtained using CB medium were identical or within 1 dilution step of the MICs obtained for VFM and MHF-Y media. Therefore, CB may be a suitable medium for H. somni antimicrobial susceptibility testing similar to MHF-Y medium. None of the 70 Australian H. somni isolates exhibited resistance to antimicrobials with CLSI breakpoints including those commonly used in the treatment of BRD in Australia (first-line tetracyclines [chlortetracycline and oxytetracycline], second-line macrolides [tulathromycin], and third-line extended-spectrum cephalosporin [ceftiofur]). Whole-genome sequence analysis of 65 H. somni isolates for genomic single nucleotide polymorphism differences identified four phylogenetic clusters, each containing isolates from different Australian states, feedlots and tissue sources that clustered together. These findings demonstrate limited genetic diversity and the absence of significant antimicrobial resistance among Australian isolates of H. somni isolated from feedlot cattle.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de los Caballos , Pasteurellaceae , Enfermedades Respiratorias , Animales , Antibacterianos/farmacología , Australia/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Genómica , Caballos , Pasteurellaceae/genética , Filogenia , Sistema Respiratorio , Enfermedades Respiratorias/veterinaria
3.
Comput Biol Med ; 138: 104893, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34598069

RESUMEN

Understanding the underlying molecular mechanism of transporter activity is one of the major discussions in structural biology. A transporter can exclusively transport one ion (specific transporter) or multiple ions (general transporter). This study compared categorical and numerical features of general and specific calcium transporters using machine learning and attribute weighting models. To this end, 444 protein features, such as the frequency of dipeptides, organism, and subcellular location, were extracted for general (n = 103) and specific calcium transporters (n = 238). Aliphatic index, subcellular location, organism, Ile-Leu frequency, Glycine frequency, hydrophobic frequency, and specific dipeptides such as Ile-Leu, Phe-Val, and Tyr-Gln were the key features in differentiating general from specific calcium transporters. Calcium transporters in the cell outer membranes were specific, while the inner ones were general; additionally, when the hydrophobic frequency or Aliphatic index is increased, the calcium transporter act as a general transporter. Random Forest with accuracy criterion showed the highest accuracy (88.88% ±5.75%) and high AUC (0.964 ± 0.020), based on 5-fold cross-validation. Decision Tree with accuracy criterion was able to predict the specificity of calcium transporter irrespective of the organism and subcellular location. This study demonstrates the precise classification of transporter function based on sequence-derived physicochemical features.


Asunto(s)
Aprendizaje Automático
4.
Microorganisms ; 9(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204544

RESUMEN

Bovine respiratory disease (BRD) causes high morbidity and mortality in beef cattle worldwide. Antimicrobial resistance (AMR) monitoring of BRD pathogens is critical to promote appropriate antimicrobial stewardship in veterinary medicine for optimal treatment and control. Here, the susceptibility of Mannheimia haemolytica and Pasteurella multicoda isolates obtained from BRD clinical cases (deep lung swabs at post-mortem) among feedlots in four Australian states (2014-2019) was determined for 19 antimicrobial agents. The M. haemolytica isolates were pan-susceptible to all tested agents apart from a single macrolide-resistant isolate (1/88; 1.1%) from New South Wales (NSW). Much higher frequencies of P. multocida isolates were resistant to tetracycline (18/140; 12.9%), tilmicosin (19/140; 13.6%), tulathromycin/gamithromycin (17/140; 12.1%), and ampicillin/penicillin (6/140; 4.6%). Five P. multocida isolates (3.6%), all obtained from NSW in 2019, exhibited dual resistance to macrolides and tetracycline, and a further two Queensland isolates from 2019 (1.4%) exhibited a multidrug-resistant phenotype to ampicillin/penicillin, tetracycline, and tilmicosin. Random-amplified polymorphic DNA (RAPD) typing identified a high degree of genetic homogeneity among the M. haemolytica isolates, whereas P. multocida isolates were more heterogeneous. Illumina whole genome sequencing identified the genes msr(E) and mph(E)encoding macrolide resistance, tet(R)-tet(H) or tet(Y) encoding tetracycline resistance, and blaROB-1 encoding ampicillin/penicillin resistance in all isolates exhibiting a corresponding resistant phenotype. The exception was the tilmicosin-resistant, tulathromycin/gamithromycin-susceptible phenotype identified in two Queensland isolates, the genetic basis of which could not be determined. These results confirm the first emergence of AMR in M. haemolytica and P. multocida from BRD cases in Australia, which should be closely monitored.

5.
Vet Dermatol ; 31(2): 138-145, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31710159

RESUMEN

BACKGROUND: The emergence of antimicrobial resistance represents a serious human and animal health risk. Good antimicrobial stewardship is essential to prolong the lifespan of existing antibiotics, and new strategies are required to combat infections in man and animals. HYPOTHESIS/OBJECTIVES: To determine the in vitro interaction of ionophores (narasin or monensin) with antimicrobial adjuvants (N-acetylcysteine (NAC), Tris-EDTA or disodium EDTA) against bacterial strains representing pathogens associated with canine otitis externa (OE). ANIMAL/ISOLATES: American Type Culture Collection (ATCC) strains Staphylococcus aureus 29213, Pseudomonas aeruginosa 27853 and P. aeruginosa biofilm producer PAO1, and a clinical isolate of Proteus mirabilis from a case of canine OE were tested. METHODS AND MATERIALS: A 2D microdilution checkerboard method was used, allowing calculation of fractional inhibitory concentration index (FICI), dose reduction index (DRI) and plotting of isobolograms. RESULTS: The combination of narasin with either Tris-EDTA or disodium EDTA produced additive effects (FICI = 0.75) against P. aeruginosa ATCC 27853 and P. aeruginosa biofilm producer ATCC PAO1. An additive effect (FICI = 0.53-0.75) was found against S. aureus ATCC 29213 when narasin or monensin were combined with NAC. The highest DRI (32-fold) was found with monensin/NAC where the MIC of monensin was reduced from 4 to 0.125 µg/mL. CONCLUSIONS AND CLINICAL IMPORTANCE: The combination of narasin with Tris-EDTA or disodium EDTA is a promising strategy to inhibit the intrinsic resistance elements of Gram-negative bacteria. These novel combinations potentially could be useful as a multimodal approach to treat mixed infections in canine OE.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Antibacterianos/farmacología , Enfermedades de los Perros/tratamiento farmacológico , Monensina/farmacología , Otitis Externa/veterinaria , Piranos/farmacología , Animales , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Biopelículas/efectos de los fármacos , Enfermedades de los Perros/microbiología , Perros , Sinergismo Farmacológico , Ionóforos/farmacología , Pruebas de Sensibilidad Microbiana , Otitis Externa/tratamiento farmacológico , Otitis Externa/microbiología , Proteus mirabilis/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
6.
Vet Dermatol ; 30(6): 524-e159, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31566822

RESUMEN

BACKGROUND: Multidrug-resistant pathogens present a major global challenge in antimicrobial therapy and frequently complicate otitis externa in dogs. HYPOTHESIS/OBJECTIVES: In vitro efficacy of oregano oil, thyme oil and their main phenolic constituents against bacterial and fungal isolates associated with canine otitis externa were investigated. It was hypothesized that the main phenolic components would have greater antimicrobial activity compared to the relative essential oil. METHODS AND MATERIALS: Antimicrobial susceptibility testing was performed using broth microdilution with spot-plating technique to determine minimum inhibitory and bactericidal/fungicidal concentrations (MICs, MBCs and MFCs). A time-kill kinetics assay was performed to confirm the bactericidal and fungicidal activity of the oils and their phenolic constituents. One hundred bacterial and fungal isolates, including meticillin-susceptible Staphylococcus pseudintermedius (n = 10), meticillin-resistant S. pseudintermedius (n = 10), ß-haemolytic Streptococcus spp. (n = 20), Pseudomonas aeruginosa (n = 20; including 10 isolates resistant to one or two antimicrobials), Proteus mirabilis (n = 20) and Malassezia pachydermatis (n = 20) from dogs with otitis externa were used. RESULTS: Oregano oil, thyme oil, carvacrol and thymol exhibited antibacterial activity against all bacterial and fungal isolates tested. MIC90 values ranged from 0.015 to 0.03% (146-292 µg/mL) for the Gram-positive bacteria and P. mirabilis. For P. aeruginosa and M. pachydermatis, MIC90 values ranged from 0.09 to 0.25% (800-2,292 µg/mL). CONCLUSIONS AND CLINICAL SIGNIFICANCE: Oregano oil, thyme oil, carvacrol and thymol showed good in vitro bactericidal and fungicidal activity against 100 isolates from dogs with otitis externa, including some highly drug-resistant isolates. These essential oils and their main phenolic constituents have the potential to be further investigated in vivo for the treatment of canine otitis externa.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Aceites Volátiles/farmacología , Otitis Externa/veterinaria , Aceites de Plantas/farmacología , Animales , Cimenos/farmacología , Enfermedades de los Perros/microbiología , Perros , Pruebas de Sensibilidad Microbiana , Origanum/química , Otitis Externa/microbiología , Timol/farmacología , Thymus (Planta)/química
7.
PLoS One ; 14(9): e0222765, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31553747

RESUMEN

An electrochemically activated solution (ECAS), generated by electrolysis of a dilute sodium chloride solution in a four-chamber electrolytic cell (Ecas4), was tested as a sanitising aerosol in eliminating bacteria from the environment of a weaning room vacated 24-48h earlier, at a continuous flow pig farm. An ultrasonic humidifier was used to fill the environment with a fog (droplets with diameters of 1-5 µm) containing 0.25 ppm of hypochlorous acid. The weaning room was fogged for 3 min at 30 min intervals during five hours of aerosol disinfection. An innovative sample treatment with propidium monoazide dye in conjunction with cyclonic air sampling was optimised and adapted for discerning live/dead bacteria in subsequent molecular quantification steps. Without fogging, total bacterial load ranged from 5.06 ± 0.04 to 5.75 ± 0.04 Log10 CFU/m3. After the first hour of fogging, a 78% total bacterial reduction was observed, which further increased to > 97% after the second hour, > 99.4% after the third and 99.8% after the fourth hour, finally resulting in a 99.99% reduction from the farm environment over five hours. Unlike the current formaldehyde spray disinfection protocol, which requires a long empty period because of its hazardous properties, this economically viable and environmentally friendly disinfection protocol may significantly lower downtime. Moreover, ECAS fogging can be easily adapted to a variety of applications, including the elimination of pathogens from livestock farm air environment for disease prevention, as well as decontamination after disease outbreaks.


Asunto(s)
Bacterias/efectos de los fármacos , Infecciones Bacterianas/prevención & control , Descontaminación/métodos , Desinfectantes/administración & dosificación , Granjas , Actinobacillus pleuropneumoniae/efectos de los fármacos , Actinobacillus pleuropneumoniae/aislamiento & purificación , Aerosoles , Microbiología del Aire , Animales , Bacterias/aislamiento & purificación , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/veterinaria , Carga Bacteriana , Desinfectantes/química , Electrólisis , Fumigación/métodos , Humidificadores , Concentración de Iones de Hidrógeno , Ácido Hipocloroso/administración & dosificación , Ácido Hipocloroso/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Porcinos/microbiología
8.
ChemistryOpen ; 8(7): 896-907, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31312589

RESUMEN

Robenidine (E)-N'-((E)-1-(4-chlorophenyl)ethylidene)-2-(1-(4-chlorophenyl)ethylidene)hydrazine-1-carboximidhydrazide displays methicillin-resistant Staphyoccoccus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) MICs of 2 µg mL-1. Herein we describe the structure-activity relationship development of a novel series of guanidine to 2-aminopyrimidine isosteres that ameliorate the low levels of mammalian cytotoxicity in the lead compound while retaining good antibiotic activity. Removal of the 2-NH2 pyrimidine moiety renders these analogues inactive. Introduction of a central 2-NH2 triazine moiety saw a 10-fold activity reduction. Phenyl to cyclohexyl isosteres were inactive. The 4-BrPh and 4-CH3Ph with MIC values of 2 and 4 µg mL-1, against MRSA and VRE respectively, are promising candidates for future development.

9.
Microb Pathog ; 132: 293-301, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082531

RESUMEN

Stone formation and catheter blockage are major complications of Proteus UTIs. In this study, we investigated the ability of allicin to inhibit P. mirabilis-induced struvite crystallization and catheter blockage using a synthetic bladder model. Struvite crystallization inhibition study was carried out using P. mirabilis lysate as urease enzyme source in synthetic urine (SU). Struvite productions were monitored by phase contrast light microscopy and measurements of pH, Mg2+ and Ca2+ precipitation and turbidity. A catheter blockage study was performed in a synthetic bladder model mimicking natural UTI in the presence of allicin at sub-MIC concentrations (MIC = 64 µg/ml). The results of crystallization study showed that allicin inhibited pH rise and consequently turbidity and precipitation of ions in a dose-dependent manner. The results of catheter blockage study showed that allicin at sub-MIC concentrations (2, 4, 8 µg/ml) significantly increased the time for catheter blockage to occur to 61, 74 and 92 h respectively compared to allicin-free control (48 h). In a similar way, the results showed that allicin delayed the increase of SU pH level in bladder model in a dose-dependent manner compared to allicin-free control. The results also showed that following the increase of allicin concentration, Mg2+ and Ca2+ deposition in catheters were much lower compared to allicin-free control, further confirmed by direct observation of the catheters' eyehole and cross sections. We conclude that allicin prevents the formation of Proteus-induced urinary crystals and the blockage of catheters by delaying pH increase and lowering Mg2+ and Ca2+ deposition in a dose-dependent manner.


Asunto(s)
Infecciones por Proteus/prevención & control , Proteus/efectos de los fármacos , Ácidos Sulfínicos/farmacología , Vejiga Urinaria/microbiología , Calcio/metabolismo , Cristalización , Disulfuros , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Magnesio/metabolismo , Pruebas de Sensibilidad Microbiana , Proteus/crecimiento & desarrollo , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/crecimiento & desarrollo , Ureasa , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control , Orina
10.
Front Microbiol ; 10: 837, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105656

RESUMEN

The emergence and global spread of antimicrobial resistance among bacterial pathogens demand alternative strategies to treat life-threatening infections. Combination drugs and repurposing of old compounds with known safety profiles that are not currently used in human medicine can address the problem of multidrug-resistant infections and promote antimicrobial stewardship in veterinary medicine. In this study, the antimicrobial activity of robenidine alone or in combination with ethylenediaminetetraacetic acid (EDTA) or polymyxin B nonapeptide (PMBN) against Gram-negative bacterial pathogens, including those associated with canine otitis externa and human skin and soft tissue infection, was evaluated in vitro using microdilution susceptibility testing and the checkerboard method. Fractional inhibitory concentration indices (FICIs) and dose reduction indices (DRI) of the combinations against tested isolates were determined. Robenidine alone was bactericidal against Acinetobacter baumannii [minimum inhibitory concentrations (MIC) mode = 8 µg/ml] and Acinetobacter calcoaceticus (MIC mode = 2 µg/ml). Against Acinetobacter spp., an additivity/indifference of the combination of robenidine/EDTA (0.53 > FICIs > 1.06) and a synergistic effect of the combination of robenidine/PMBN (0.5 < FICI) were obtained. DRIs of robenidine were significantly increased in the presence of both EDTA and PMBN from 2- to 2048-fold. Robenidine exhibited antimicrobial activity against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, in the presence of sub-inhibitory concentrations of either EDTA or PMBN. Robenidine also demonstrated potent antibacterial activity against multidrug-resistant Gram-positive pathogens and all Gram-negative pathogens isolated from cases of canine otitis externa in the presence of EDTA. Robenidine did not demonstrate antibiofilm activity against Gram-positive and Gram-negative bacteria. EDTA facilitated biofilm biomass degradation for both Gram-positives and Gram-negatives. The addition of robenidine to EDTA was not associated with any change in the effect on biofilm biomass degradation. The combination of robenidine with EDTA or PMBN has potential for further exploration and pharmaceutical development, such as incorporation into topical and otic formulations for animal and human use.

11.
Vet Dermatol ; 30(2): 133-e38, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30548715

RESUMEN

BACKGROUND: An antibiotic adjuvant is a chemical substance used to modify or augment the effectiveness of primary antimicrobial agents against drug-resistant micro-organisms. Its use provides an alternative approach to address the global issue of antimicrobial resistance and enhance antimicrobial stewardship. HYPOTHESIS/OBJECTIVES: To determine the antimicrobial activity of a panel of potential antimicrobial adjuvants against common pathogens associated with canine otitis externa (OE). ANIMALS/ISOLATES: A number of type strains and clinical isolates (n = 110) from canine OE were tested including Staphylococcus pseudintermedius, ß-haemolytic Streptococcus spp., Pseudomonas aeruginosa, Proteus mirabilis and Malassezia pachydermatis. METHODS AND MATERIALS: Antimicrobial activities of monolaurin, monocaprin, N-acetylcysteine (NAC), polymyxin B nonapeptide, Tris-EDTA, Tris-HCL and disodium EDTA were tested using microdilution methodology according to CLSI guidelines. RESULTS: N-acetylcysteine, Tris-EDTA and disodium EDTA had antimicrobial activity against both type strains and otic pathogens. The other adjuvants tested had limited to no efficacy. NAC had a minimal inhibitory concentration (MIC) range of 2,500-10,000 µg/mL for the various organisms. Pseudomonas aeruginosa isolates were eight times more susceptible to disodium EDTA in the presence of Tris-HCL in comparison to disodium EDTA alone. Malassezia pachydermatis isolates were most susceptible to Tris-EDTA (MIC90  = 190/60 µg/mL) and disodium EDTA (MIC90  = 120 µg/mL). CONCLUSIONS AND CLINICAL RELEVANCE: N-acetylcysteine, Tris-EDTA and disodium EDTA have intrinsic antimicrobial activity and represent promising adjuvants that could be used to enhance the efficacy of existing antibiotics against Gram-negative and multidrug-resistant bacterial infections. These agents could be combined with other antimicrobial agents in a multimodal approach for mixed ear infections in dogs.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Otitis Externa/veterinaria , Acetilcisteína/farmacología , Animales , Bacterias/patogenicidad , Perros , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Ácido Edético/farmacología , Hongos/patogenicidad , Lauratos/farmacología , Malassezia/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Monoglicéridos/farmacología , Otitis Externa/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus/efectos de los fármacos
12.
ChemMedChem ; 13(23): 2573-2580, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30318716

RESUMEN

Desymmetrisation of robenidine (1: N',2-bis((E)-4-chlorobenzylidene)hydrazine-1-carboximidhydrazide) and the introduction of imine alkyl substituents gave good antibiotic activity. Of note was the increased potency of two analogues against vancomycin-resistant Enterococci (VRE), one of which returned a MIC of 0.5 µg mL-1 . Five analogues were found to be equipotent or more potent than the lead 1. Introduction of an indole moiety resulted in the most active robenidine analogue against methicillin-resistant S. aureus (MRSA), with a MIC of 1.0 µg mL-1 . Imine C=NH isosteres (C=O/C=S) were inactive. Monomeric analogues were 16-64 µg mL-1 active against MRSA and VRE. An analogue that lacks the terminal hydrazide NH moiety showed modest Gram-negative activity at 64 µg mL-1 . A 4-tert-butyl analogue was shown to be active against both Gram-positive and -negative strains at 16-64 µg mL-1 . In general, additional modifications with aromatic moieties was poorly tolerated, except with concomitant introduction of an imine C-alkyl group. The activity of these analogues against MRSA and VRE ranged from 8 µg mL-1 to inactive (MIC>128 µg mL-1 ) with the naphthyl and indole analogues. Gram-negative activity was most promising with two compounds at 16 µg mL-1 against E. coli. Against P. aeruginosa, the highest activity observed was with MIC values of 32 µg mL-1 with another two analogues. Combined, these findings support the further development of the (E)-2-benzylidenehydrazine-1-carboximidamide scaffold as a promising scaffold for the development of antibiotics against Gram-positive and Gram-negative strains.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Robenidina/análogos & derivados , Robenidina/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos
13.
J Vet Pharmacol Ther ; 41(5): 746-754, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29971788

RESUMEN

Increasing reports of multidrug-resistant bacterial infections in animals has created a need for novel antimicrobial agents that do not promote cross-resistance to critically important antimicrobial classes used in human medicine. In response to the recent emergence of antimicrobial resistance in several bovine mastitis pathogens, in vitro antimicrobial susceptibility was determined for four polyether ionophores (lasalocid, monensin, narasin and salinomycin) against Staphylococcus spp. and Streptococcus spp. isolated from clinical cases. In addition, erythrocyte haemolysis and WST-1 cell proliferation assays were used to assess in vitro mammalian cell cytotoxicity and biofilm susceptibility testing was performed using the minimum biofilm eradication concentration (MBEC™) biofilm assay. Lasalocid, monensin, narasin and salinomycin exhibited bacteriostatic antimicrobial activity against all pathogens tested, including methicillin-resistant staphylococci, with MIC90 values <16 µg/ml. Narasin and monensin displayed the least toxicity against mammalian cell lines and all compounds significantly reduced viable cell numbers in a Staphylococcus aureus biofilm. Based on in vitro characterization, all four ionophores offer potentially novel treatments against bovine mastitis but in vivo studies will be essential to determine whether acceptable safety and efficacy is present following intramammary administration.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias Grampositivas/efectos de los fármacos , Ionóforos/uso terapéutico , Mastitis Bovina/tratamiento farmacológico , Animales , Biopelículas/efectos de los fármacos , Bovinos , Femenino , Lasalocido/uso terapéutico , Mastitis Bovina/microbiología , Pruebas de Sensibilidad Microbiana/veterinaria , Monensina/uso terapéutico , Piranos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Staphylococcus/efectos de los fármacos , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/veterinaria , Streptococcus/efectos de los fármacos
14.
PLoS One ; 13(7): e0200195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30011298

RESUMEN

There are very few articles in the literature describing continuous models of bacterial infections that mimic disease pathogenesis in humans and animals without using separate cohorts of animals at each stage of disease. In this work, we developed bioluminescent mouse models of partial-thickness scald wound infection and sepsis that mimic disease pathogenesis in humans and animals using a recombinant luciferase-expressing Staphylococcus aureus strain (Xen29). Two days post-scald wound infection, mice were treated twice daily with a 2% topical mupirocin ointment for 7 days. For sepsis experiments, mice were treated intraperitoneally with 6 mg/kg daptomycin 2 h and 6 h post-infection and time to moribund monitored for 72 h. Consistent bacterial burden data were obtained from individual mice by regular photon intensity quantification on a Xenogen IVIS Lumina XRMS Series III biophotonic imaging system, with concomitant significant reduction in photon intensities in drug-treated mice. Post-mortem histopathological examination of wounds and bacterial counts in blood correlated closely with disease severity and total flux obtained from Xen29. The bioluminescent murine models provide a refinement to existing techniques of multiple bacterial enumeration during disease pathogenesis and promote animal usage reduction. The models also provide an efficient and information-rich platform for preclinical efficacy evaluation of new drug classes for treating acute and chronic human and animal bacterial infections.


Asunto(s)
Bacteriemia/tratamiento farmacológico , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/genética , Infección de Heridas/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Bacteriemia/diagnóstico por imagen , Bacteriemia/patología , Quemaduras/diagnóstico por imagen , Quemaduras/tratamiento farmacológico , Quemaduras/patología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Mupirocina/farmacología , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/patología , Infección de Heridas/diagnóstico por imagen , Infección de Heridas/patología
15.
Artículo en Inglés | MEDLINE | ID: mdl-30017076

RESUMEN

Antimicrobial resistance and antimicrobial stewardship are of ever-increasing importance in veterinary medicine. Multidrug-resistant infections of the canine skin and ear continue to emerge, but the use of antibiotic classes of critical importance to human medicine may not represent good antimicrobial stewardship. Repurposing of old drugs that are not used in human medicine is one approach that addresses both these issues. In this study, the minimal inhibitory concentration (MIC) of monensin for 111 bacterial and yeast canine otitis isolates was determined using microdilution methodology according to Clinical Laboratory Standards Institute (CLSI) guidelines. Monensin was effective against all Gram-positive bacteria including the multidrug-resistant staphylococcal strains with MICs ranging from 1 to 4 µg/ml, but lacked antimicrobial activity against Gram-negative bacteria and yeast isolates. Monensin has potential to be incorporated as one of the main components in an otic formulation.


Asunto(s)
Antibacterianos/farmacología , Programas de Optimización del Uso de los Antimicrobianos/métodos , Bacterias Grampositivas/efectos de los fármacos , Monensina/farmacología , Otitis Externa/veterinaria , Animales , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Candida/aislamiento & purificación , Enfermedades de los Perros/microbiología , Perros , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Otitis Externa/microbiología , Pichia/efectos de los fármacos , Pichia/crecimiento & desarrollo , Pichia/aislamiento & purificación , Especificidad de la Especie
16.
Vet Microbiol ; 219: 17-22, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29778192

RESUMEN

Methicillin-resistant coagulase-negative staphylococci (MRCoNS) have recently emerged as a significant cause of bovine mastitis worldwide. Here we describe the isolation of MRCoNS from cases of bovine mastitis from a single dairy farm in Australia. Fourteen CoNS isolates were identified as MRCoNS on the basis of having an oxacillin MIC of ≥0.5 µg/mL. The isolates were speciated as S. chromogenes (n = 1) S. fleurettii (n = 1), S. haemolyticus (n = 2), S. sciuri (n = 5), S. simulans (n = 1) S. succinus (n = 2) and S. xylosus (n = 2). Five of the isolates (S. fleuretti, S. haemolyticus S. sciuri and two S. succinus) were mecA-positive. We also detected a previously described S. sciuri mecA homolog in four oxacillin-resistant S. sciuri isolates. The remainder of the putative MRCoNS did not contain any mecA-related resistance determinants in their genomes. Comparative genomic analysis of three previously published S. sciuri isolates, from humans, a squirrel and a cereal crop (rice), and a representative isolate from our study demonstrated clustering and a high degree of genetic homogeneity (>95%), suggesting S. sciuri has low host specificity. In conclusion, CoNS, in particular S. sciuri, may act as a reservoir for SCCmec elements that can easily be spread between different host species by direct cross-infection.


Asunto(s)
Genoma Bacteriano/genética , Mastitis Bovina/microbiología , Resistencia a la Meticilina/genética , Meticilina/farmacología , Infecciones Estafilocócicas/veterinaria , Staphylococcus/genética , Animales , Antibacterianos/farmacología , Australia/epidemiología , Bovinos , Coagulasa/biosíntesis , Coagulasa/deficiencia , ADN Bacteriano/genética , Granjas , Femenino , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/transmisión , Infecciones Estafilocócicas/virología , Staphylococcus/clasificación , Staphylococcus/efectos de los fármacos , Staphylococcus/enzimología , Secuenciación Completa del Genoma
17.
BMC Res Notes ; 11(1): 216, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609634

RESUMEN

OBJECTIVES: Currently, there is no consensus protocols regarding the combination of glycerol (GLY), gelatin or foetal bovine serum (FBS) with dimethyl sulphoxide (DMSO) as cryoprotectants for Mycoplasma bovis in bovine milk samples. This study aimed to compare different cryopreservation compounds and storage temperatures for M. bovis. RESULTS: There were significant differences in the survival of M. bovis on different media. Differences were also observed between different storage conditions. All additives improved the survival of M. bovis in comparison to control (CON). The combination of GLY and DMSO was shown to be significantly different to CON with 57.1% (95% CI = 21.43-133.34) and 19.1% (95% CI = 11.73-60.27), respectively at week 16, and its use should be encouraged as a cryoprotectant for M. bovis at - 20 and - 80 °C. GEL/DMSO showed the highest survival rate for M. bovis with 57.14% (95% CI = 21.43-133.34) at 4 °C in comparison with CON 14.29% (95% CI = 9.60-50.39). FBS/DMSO showed the highest survival rate for the short-term preservation similarly to other additives. The evaluated cryopreservative compounds would improve survivability of M. bovis in milk for both transport and long-term storage. Hence, it is recommended to use the mentioned methods for routine transportation or storage purposes for suspicious M. bovis milk samples.


Asunto(s)
Crioprotectores/farmacología , Congelación , Leche , Mycoplasma bovis/efectos de los fármacos , Animales , Bovinos , Criopreservación/métodos , Dimetilsulfóxido/farmacología , Glicerol/farmacología , Humanos , Viabilidad Microbiana/efectos de los fármacos , Mycoplasma bovis/fisiología , Factores de Tiempo
18.
Vet Dermatol ; 29(2): 149-e57, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29363210

RESUMEN

BACKGROUND: Antimicrobial resistance and antimicrobial stewardship are of ever-increasing importance in veterinary medicine. Re-purposing of old drugs that are not used in human medicine is one approach that addresses the emergence of multidrug resistance in canine skin and ear infections, and can reduce the use of critically important human antibiotic classes. HYPOTHESIS/OBJECTIVES: To determine the antimicrobial activity of narasin, a polyether ionophore conventionally used as a rumen modifier and anticoccidial agent in production animals, against common clinical isolates of canine otitis externa (OE). ANIMALS/ISOLATES: Clinical isolates (n = 110) from canine OE were tested, including 17 meticillin-susceptible Staphylococcus pseudintermedius (MSSP), 13 multidrug-resistant Staphylococcus pseudintermedius (MDRSP), and 20 each of ß-haemolytic Streptococcus spp., Pseudomonas aeruginosa, Proteus mirabilis and Malassezia pachydermatis. METHODS: Bacterial and yeast isolates were subcultured, suspended in broth and inoculated into 96-well plates. Organisms were tested against concentrations of narasin ranging from 0.03 to 128 µg/mL. Minimal inhibitory concentrations (MICs) were determined after overnight incubation. RESULTS: Narasin MICs for staphylococcal and streptococcal isolates ranged from 0.06 to 0.25 µg/mL; MIC50 and MIC90 values for both organisms were 0.125 µg/mL. No MICs were achieved for Pseudomonas or Proteus isolates. There was a weak antifungal effect against M. pachydermatis isolates (MIC 32 to >128 µg/mL). CONCLUSIONS AND CLINICAL RELEVANCE: Narasin was effective against Gram-positive bacteria and had antifungal activity at higher concentrations against M. pachydermatis. However, the lack of Gram-negative activity would prevent its use as a sole antimicrobial agent in cases of canine OE.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Otitis Externa/veterinaria , Piranos/farmacología , Animales , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/microbiología , Perros , Reposicionamiento de Medicamentos , Malassezia/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Otitis Externa/tratamiento farmacológico , Otitis Externa/microbiología
19.
BMC Vet Res ; 13(1): 351, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178880

RESUMEN

BACKGROUND: Mycoplasma mastitis is increasingly posing significant impact on dairy industry. Although the effects of major conventional mastitis pathogens on milk components has been widely addressed in the literature, limited data on the effects of different Mycoplasma and Acholeplasma spp. on milk quality and quantity is available. The aim of this study was to determine the casual relationship of Mycoplasma spp. and A. laidlawii to mastitis and compare them to subclinical mastitis caused by conventional mastitis pathogens from a single dairy herd in South Australia; Mycoplasma spp. and A. laidlawii were detected using PCR applied directly to milk samples. The herd had mastitis problem with high somatic cell count and low response rate to conventional antimicrobial therapy. A total of 288 cow-level milk samples were collected aseptically and used in this study. RESULTS: Conventional culture showed a predominance of coagulase-negative staphylococci, followed by coagulase-positive staphylococci, Streptococcus spp., Enterococcus spp., E. coli, and Klebsiella spp. PCR results showed a high prevalence of mycoplasmas (76.7%), including A. laidlawii (10.8%), M. bovis (6.2%), M. bovirhinis (5.6%), M. arginini (2%), and (52.1%) of cows were co-infected with two or more Mycoplasma and Acholeplasma species. Mycoplasma co-infection significantly increased somatic cell counts (SCC) similar to conventional mastitis pathogens and compared to non-infected cows with 389.3, 550.3 and 67.3 respectively; and decreased the milk yield with 29.0, 29.9 and 34.4 l, respectively. Mycoplasma co-infection caused significant increase in protein percentage, and significant decrease in fat percentage and total milk solids, similar to other conventional mastitis pathogens. In contrast, changes in milk composition and yield caused by various individual Mycoplasma species were non-significant. CONCLUSIONS: Mycoplasma mastitis had on-farm economic consequences similar to common conventional mastitis pathogens. Results of our study indicate that co-infection Mycoplasma mastitis caused similar effect on milk composition to other mastitis pathogens and we hope these findings raise the awareness of the importance of their detection on routine diagnostic panels.


Asunto(s)
Glándulas Mamarias Animales/microbiología , Mastitis Bovina/microbiología , Leche/química , Infecciones por Mycoplasma/veterinaria , Acholeplasma/aislamiento & purificación , Animales , Bovinos , Femenino , Leche/citología , Leche/microbiología , Mycoplasma/aislamiento & purificación , Infecciones por Mycoplasma/microbiología , Australia del Sur
20.
PLoS One ; 12(9): e0183457, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28873428

RESUMEN

The spread of multidrug resistance among bacterial pathogens poses a serious threat to public health worldwide. Recent approaches towards combating antimicrobial resistance include repurposing old compounds with known safety and development pathways as new antibacterial classes with novel mechanisms of action. Here we show that an analog of the anticoccidial drug robenidine (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less cytotoxic to mammalian cell lines than the parent compound, showed low metabolic degradation rates by human and mouse liver microsomes, and exhibited high plasma concentration and low plasma clearance rates in mice. NCL195 was bactericidal against Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a new chemical lead for further medicinal chemistry and pharmaceutical development to enhance potency, solubility and selectivity against serious bacterial pathogens.


Asunto(s)
Antibacterianos/farmacología , Robenidina/análogos & derivados , Robenidina/farmacología , Animales , Antibacterianos/sangre , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterococcus/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Relación Estructura-Actividad , Factores de Tiempo , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...