Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(20): 21964-21973, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799304

RESUMEN

Angiogenesis, as a tumor hallmark, plays an important role in the growth and development of the tumor vasculature system. There is a huge amount of evidence suggesting that the vascular endothelial growth factor receptor (VEGFR-2)/VEGF-A axis is one of the main contributors to tumor angiogenesis and metastasis. Thus, inhibition of the VEGFR-2 signaling pathway by anti-VEGFR-2 mAb can retard tumor growth. In this study, we employ phage display technology and solution-phase biopanning (SPB) to isolate specific single-chain variable fragments (scFvs) against VEGFR-2 and report on the receptor binding characteristics of the candidate scFvs A semisynthetic phage antibody library to isolate anti-VEGFR-2 scFvs through an SPB performed with decreasing concentrations of the VEGFR-2-His tag and VEGFR-2-biotin. After successful expression and purification, the specificity of the selected scFv clones was further analyzed by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunoblotting. The competition assay was undertaken to identify the VEGFR-2 receptor-blocking properties of the scFvs. Furthermore, the molecular binding characteristics of candidate scFvs were extensively studied by peptide-protein docking. Polyclonal ELISA analysis subsequent to four rounds of biopanning showed a significant enrichment of VEGFR-2-specific phage clones by increasing positive signals from the first round toward the fourth round of selection. The individual VEGFR-2-reactive scFv phage clones were identified by monoclonal phage ELISA. The sequence analysis and complementarity-determining region alignment identified the four unique anti-VEGFR-2-scFv clones. The soluble and purified scFvs displayed binding activity against soluble and cell-associated forms of VEGFR-2 protein in the ELISA and flow cytometry assays. Based on the inference from the molecular docking results, scFvs D3, E1, H1, and E9 recognized domains 2 and 3 on the VEGFR-2 protein and displayed competition with VEGF-A for binding to VEGFR-2. The competition assay confirmed that scFvs H1 and D3 can block the VEGFR-2/VEGF-A interaction. In conclusion, we identified novel VEGFR-2-blocking scFvs that perhaps exhibit the potential for angiogenesis inhibition in VEGFR-2-overexpressed tumor cells.

2.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37667877

RESUMEN

Human MRP1 protein plays a vital role in cancer multidrug resistance. Coumarins show promising pharmacological properties. Virtual screening, ADMET, molecular docking and molecular dynamics (MD) simulations were utilized as pharmacoinformatic tools to identify potential MRP1 inhibitors among coumarin derivatives. Using in silico ADMET, 50 hits were further investigated for their selectivity toward the nucleotide-binding domains (NBDs) of MRP1 using molecular docking. Accordingly, coumarin, its symmetrical ketone derivative Lig. No. 4, and Reversan were candidates for focused docking study with the NBDs domains compared with ATP. The result indicates that Lig. No. 4, with the best binding score, interacts with NBDs via hydrogen bonds with residues: GLN713, LYS684, GLY683, CYS682 in NBD1, and GLY1432, GLY771, SER769 and GLN1374 in NBD2, which mostly overlap with ATP binding residues. Moreover, doxorubicin (Doxo) was docked to the transmembrane domains (TMDs) active site of MRP1. Doxo interaction with TMDs was subjected to MD simulation in the NBDs free and occupied with Lig. No. 4 states. The results showed that Doxo interacts more strongly with TMD residues in inward facing feature of TMDs helices. However, when Lig. No. 4 exists in NBDs, Doxo interactions are different, and TMD helices show more outward-facing conformation. This result may suggest a partial competitive inhibition mechanism for the Lig. No. 4 on MRP1 compared with ATP. So, it may inhibit active complex formation by interfering with ATP entrance to NBDs and locking MRP1 conformation in outward-facing mode. This study suggests a valuable coumarin derivative that can be further investigated for potent MRP1 inhibitors.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSVirtual screening scored a symmetrical ketone derivative IUPAC ([2-[(1E, 4E)-5-(2-acetyloxyphenyl)-3-oxopenta-1, 4-dienyl] phenyl] acetate); PubChem CID 5468558 (Lig. No. 4 in this study) as the best candidate among coumarins to inhibit MRP1.This compound binds to NBD1 and NBD2 of ABC transporters via hydrogen bonds shared with residues that are also involved in the ATP binding.This result, if not at all, suggest a partial competitive inhibition mechanism for Lig. No. 4 on the MRP1 protein.Molecular dynamics simulation study reveals different doxorubicin binding modes in interaction with MRP1 transmembrane domain in free and occupied NBDs with Lig. No. 4.Lig. No. 4 is a valuable candidate for further drug development studies to suppress drug resistance.

3.
Cell Biochem Biophys ; 80(4): 795-806, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169801

RESUMEN

Recently, the study of autophagy and its mechanism on the cancer cell growth process has received much attention. lactoferrin (Lf) is a glycoprotein with various biological activities, including antibacterial, antiviral, anti-cancer, etc. In the present study, the effect of different concentrations of lactoferrin on the expression of ULK1 and ATG13 genes was evaluated in breast cancer cell line MCF7 using real-time PCR technique as well as the molecular mechanism of these two genes and their proteins in the autophagy pathway and the relationship between lactoferrin and these proteins were investigated by bioinformatics studies. The result showed that the expression of the ULK1 gene at a concentration of 500 µg/ml of lactoferrin was significantly (P < 0.007) increased compared to the control and two other concentrations. Also, the expression of the ATG13 gene at all three concentrations was not significantly different from each other and compared to the control (P = 0.635). In the immunoblot of ULK1 protein at a concentration of 500 µg, more protein expression was observed. The binding mode of lactoferrin with ULK1, ATG13, and ATG101 proteins was obtained using docking. According to docking results, the N-lobe region of lactoferrin interacts with the PS domain of the ULK1 protein, and the N-lobe region of lactoferrin interacts with the horma domain of the ATG 13 and ATG101 proteins. The results show that lactoferrin, in addition to acting on the gene, interacts with ULK1, ATG13, and ATG101 proteins. Since all three proteins are components of the autophagy initiation complex, lactoferrin can induce autophagy in this way.


Asunto(s)
Neoplasias de la Mama , Lactoferrina , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antibacterianos , Antivirales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Neoplasias de la Mama/genética , Línea Celular , Biología Computacional , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/farmacología
4.
Int J Mol Sci ; 19(4)2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29671783

RESUMEN

Telomerase, the enzyme responsible for cell immortality, is an important target in anti-cancer drug discovery. Boldine, an abundant aporphine alkaloid of Peumus boldus, is known to inhibit telomerase at non-toxic concentrations. Cytotoxicity of N-benzylsecoboldine hydrochloride (BSB), a synthetic derivative of boldine, was determined using the MTT method in MCF7 and MDA-MB231 cells. Aliquots of cell lysates were incubated with various concentrations of BSB in qTRAP (quantitative telomere repeat amplification protocol)-ligand experiments before substrate elongation by telomerase or amplification by hot-start Taq polymerase. The crystal structure of TERT, the catalytic subunit of telomerase from Tribolium castaneum, was used for docking and molecular dynamics analysis. The qTRAP-ligand data gave an IC50 value of about 0.17 ± 0.1 µM for BSB, roughly 400 times stronger than boldine, while the LD50 in the cytotoxicity assays were 12.5 and 21.88 µM, respectively, in cells treated for 48 h. Although both compounds interacted well with the active site, MD analysis suggests a second binding site with which BSB interacts via two hydrogen bonds, much more strongly than boldine. Theoretical analyses also evaluated the IC50 for BSB as submicromolar. BSB, with greater hydrophobicity and flexibility than boldine, represents a promising structure to inhibit telomerase at non-toxic concentrations.


Asunto(s)
Aporfinas/química , Aporfinas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Telomerasa/antagonistas & inhibidores , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Peumus/química , Telomerasa/química , Telomerasa/metabolismo , Tribolium/química , Tribolium/enzimología
5.
Mol Biol Res Commun ; 5(1): 19-30, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27844017

RESUMEN

HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on HTLV-1 are frequently seen in this protease. Therefore, inhibition of HTLV-1 protease activity is expected to disrupt HTLV-1's ability to replicate and infect additional cells. In this study, we initially designed fifteen inhibitory compounds based on the conformations of a class of HIV-1 aspartyl protease inhibitors, sulfonamid-peptoid. Five compounds were chosen based on the goodness of their Drug-Likeness scoreusing "Lipinsk's rule of five". Here, using protein-ligand docking approach we compared the inhibitory constants of these compounds to those available in literatures and observed significantly higher inhibition for two compounds, SP-4 and SP-5. Our data suggest that the addition of two cyclic hydrocarbons to both ends of sulfonamide peptoids leads to the formation of new hydrophobic interactions due to the semi-circular form of these compounds, connecting the first chain of protease to the two ends of tested ligands via Hydrophobic interactions. We conclude that hydrophobic force plays an important role in suppressing protease activity especially for HTLV-1 protease, which in turn prevents the virus maturity. Therefore, designing and development of new ligands based on aromatic hydrocarbons in both ends of inhibitors is very promising for efficient treatment.

6.
Biochem Biophys Rep ; 8: 14-22, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28955936

RESUMEN

Intracellularlocation of a viral unspliced mRNA in host cell is a crucial factor for normal life of the virus. Rex is a neucleo-cytoplasmic shuffling protein of Human T-cell Leukemia Virus-1(HTLV-1)which has important role in active transport of cargo-containing RNA from nucleus to cytoplasm. Therefore, it plays a crucial role in the disease development by the virus. In spite of its importance, the 3d-structurephosphorylated and unphosphorylated of this protein has not been determined. In this study, first we predicted whether Rex protein is an ordered or disordered protein. In second step protein 3Dstructure of Rex was obtained. The content of disorder-promoting amino acids, flexibility, hydrophobicity, short linear motifs (SLiMs) and protein binding regions and probability of Rex crystallization were calculated by various In Silico methods. The3D models of Rex protein were obtained by various In Silico methods, such as homology modeling, threading and ab initio, including; I-TASSER, LOMETS, SPARSKS, ROBBETA and QUARK servers. By comparing and analyzing Qmean, z-scores and energy levels of selected models, the best structures with highest favored region in Ramachandran plot (higher than 90%) was refined with MODREFINER software. In silico analysis of Rex physicochemical properties and also predicted SLiMs and binding regions sites confirms that unphosphorylated Rex protein in HTLV-1 as Rev protin in HIV is wholly disordered protein belongs to the class of intrinsically disordered proteins with extended disorder (native coils, native pre-molten globules).

7.
Biochim Biophys Acta ; 1834(12): 2729-35, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24103420

RESUMEN

Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission.


Asunto(s)
Luciérnagas/enzimología , Luciferasas de Luciérnaga/química , Luminiscencia , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Luciérnagas/genética , Enlace de Hidrógeno , Luciferasas de Luciérnaga/genética , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...