Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
2.
ACS Infect Dis ; 10(2): 398-411, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38270149

RESUMEN

The SARS-CoV-1 spike glycoprotein contains a fusion peptide (FP) segment that mediates the fusion of the viral and host cell membranes. Calcium ions are thought to position the FP optimally for membrane insertion by interacting with negatively charged residues in this segment (E801, D802, D812, E821, D825, and D830); however, which residues bind to calcium and in what combinations supportive of membrane insertion are unknown. Using biological assays and molecular dynamics studies, we have determined the functional configurations of FP-Ca2+ binding that likely promote membrane insertion. We first individually mutated the negatively charged residues in the SARS CoV-1 FP to assay their roles in cell entry and syncytia formation, finding that charge loss in the D802A or D830A mutants greatly reduced syncytia formation and pseudoparticle transduction of VeroE6 cells. Interestingly, one mutation (D812A) led to a modest increase in cell transduction, further indicating that FP function likely depends on calcium binding at specific residues and in specific combinations. To interpret these results mechanistically and identify specific modes of FP-Ca2+ binding that modulate membrane insertion, we performed molecular dynamics simulations of the SARS-CoV-1 FP and Ca2+ions. The preferred residue pairs for Ca2+ binding we identified (E801/D802, E801/D830, and D812/E821) include the two residues found to be essential for S function in our biological studies (D802 and D830). The three preferred Ca2+ binding pairs were also predicted to promote FP membrane insertion. We also identified a Ca2+ binding pair (E821/D825) predicted to inhibit FP membrane insertion. We then carried out simulations in the presence of membranes and found that binding of Ca2+ to SARS-CoV-1 FP residue pairs E801/D802 and D812/E821 facilitates membrane insertion by enabling the peptide to adopt conformations that shield the negative charges of the FP to reduce repulsion by the membrane phospholipid headgroups. This calcium binding mode also optimally positions the hydrophobic LLF region of the FP for membrane penetration. Conversely, Ca2+ binding to the FP E801/D802 and D821/D825 pairs eliminates the negative charge screening and instead creates a repulsive negative charge that hinders membrane penetration of the LLF motif. These computational results, taken together with our biological studies, provide an improved and nuanced mechanistic understanding of the dymanics of SARS-CoV-1 calcium binding and their potential effects on host cell entry.


Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Secuencia de Aminoácidos , Calcio/metabolismo , Fusión de Membrana/fisiología , Péptidos/química , Iones
3.
J Biol Chem ; 300(2): 105649, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237683

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.


Asunto(s)
Fosfolípidos , Receptores Acoplados a Proteínas G , Animales , Transporte Biológico , Colesterol , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Bovinos , Pavos
4.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38045315

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.

5.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292992

RESUMEN

Molecular dynamics (MD) simulations have become increasingly impactful in membrane biophysics because they offer atomistic resolution into the atomistic fluctuations of lipid assemblies. Validation of the simulation trajectories with experimental data is crucial for interpretation and application of MD results. As an ideal benchmarking technique, NMR spectroscopy delivers order parameters of the carbon-deuterium bond fluctuations along the lipid chains. Additionally, NMR relaxation can access lipid dynamics providing yet another point for validation of simulation force fields. Here we performed short resampling simulations of membrane trajectories to investigate the lipid CH bond fluctuations on sub-40-ps timescales to explore the local fast dynamics. We recently established a robust framework for analysis of NMR relaxation rates from MD simulations, which improves upon current approaches and shows excellent agreement of experimental and theoretical results. The calculation of relaxation rates from simulations presents a universal challenge that we addressed by hypothesizing the existence of fast CH bond dynamics that evade the analysis of simulation data with temporal resolution of 40 ps (or lower). Indeed, our results support this hypothesis confirming the validity of our solution to the sampling problem. Furthermore, we show that the fast CH bond dynamics occur on timescales at which carbon-carbon bond conformations appear nearly stationary and unaffected by cholesterol. Lastly, we discuss the correspondence to the CH bond dynamics of liquid hydrocarbons and relate their existence to the apparent microviscosity of the bilayer hydrocarbon core.

6.
Nat Commun ; 14(1): 3391, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296098

RESUMEN

Major Facilitator Superfamily Domain containing 2 A (MFSD2A) is a transporter that is highly enriched at the blood-brain and blood-retinal barriers, where it mediates Na+-dependent uptake of ω-3 fatty acids in the form of lysolipids into the brain and eyes, respectively. Despite recent structural insights, it remains unclear how this process is initiated, and driven by Na+. Here, we perform Molecular Dynamics simulations which demonstrate that substrates enter outward facing MFSD2A from the outer leaflet of the membrane via lateral openings between transmembrane helices 5/8 and 2/11. The substrate headgroup enters first and engages in Na+ -bridged interactions with a conserved glutamic acid, while the tail is surrounded by hydrophobic residues. This binding mode is consistent with a "trap-and-flip" mechanism and triggers transition to an occluded conformation. Furthermore, using machine learning analysis, we identify key elements that enable these transitions. These results advance our molecular understanding of the MFSD2A transport cycle.


Asunto(s)
Ácidos Grasos Omega-3 , Simportadores , Ácidos Grasos Omega-3/metabolismo , Simportadores/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Simulación de Dinámica Molecular
7.
Sci Immunol ; 8(81): eadf1426, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36867678

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy relies on T cells that are guided by synthetic receptors to target and lyse cancer cells. CARs bind to cell surface antigens through an scFv (binder), the affinity of which is central to determining CAR T cell function and therapeutic success. CAR T cells targeting CD19 were the first to achieve marked clinical responses in patients with relapsed/refractory B cell malignancies and to be approved by the U.S. Food and Drug Administration (FDA). We report cryo-EM structures of CD19 antigen with the binder FMC63, which is used in four FDA-approved CAR T cell therapies (Kymriah, Yescarta, Tecartus, and Breyanzi), and the binder SJ25C1, which has also been used extensively in multiple clinical trials. We used these structures for molecular dynamics simulations, which guided creation of lower- or higher-affinity binders, and ultimately produced CAR T cells endowed with distinct tumor recognition sensitivities. The CAR T cells exhibited different antigen density requirements to trigger cytolysis and differed in their propensity to prompt trogocytosis upon contacting tumor cells. Our work shows how structural information can be applied to tune CAR T cell performance to specific target antigen densities.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Estados Unidos , Humanos , Antígenos de Superficie , Linfocitos B , Muerte Celular
8.
Science ; 379(6629): eabj7412, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656933

RESUMEN

Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.


Asunto(s)
Linfocitos B , Transformación Celular Neoplásica , Linfoma de Células B Grandes Difuso , Proteínas de Neoplasias , Animales , Humanos , Ratones , Afinidad de Anticuerpos/genética , Linfocitos B/patología , Centro Germinal , Mutación , Proteínas de Neoplasias/genética , Linfoma de Células B Grandes Difuso/genética , Transformación Celular Neoplásica/genética , Selección Genética
9.
Biophys J ; 122(6): 984-1002, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36474442

RESUMEN

Lipid bilayers form the main matrix of functional cell membranes, and their dynamics underlie a host of physical and biological processes. Here we show that elastic membrane properties and collective molecular dynamics (MD) are related by the mean-square amplitudes (order parameters) and relaxation rates (correlation times) of lipid acyl chain motions. We performed all-atom MD simulations of liquid-crystalline bilayers that allow direct comparison with carbon-hydrogen (CH) bond relaxations measured with NMR spectroscopy. Previous computational and theoretical approaches have assumed isotropic relaxation, which yields inaccurate description of lipid chain dynamics and incorrect data interpretation. Instead, the new framework includes a fixed bilayer normal (director axis) and restricted anisotropic motion of the CH bonds in accord with their segmental order parameters, enabling robust validation of lipid force fields. Simulated spectral densities of thermally excited CH bond fluctuations exhibited well-defined spin-lattice (Zeeman) relaxations analogous to those in NMR measurements. Their frequency signature could be fit to a simple power-law function, indicative of nematic-like collective dynamics. Moreover, calculated relaxation rates scaled as the squared order parameters yielding an apparent κC modulus for bilayer bending. Our results show a strong correlation with κC values obtained from solid-state NMR studies of bilayers without and with cholesterol as validated by neutron spin-echo measurements of membrane elasticity. The simulations uncover a critical role of interleaflet coupling in membrane mechanics and thus provide important insights into molecular sites of emerging elastic properties within lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos , Imagen por Resonancia Magnética , Membrana Dobles de Lípidos/química , Membrana Celular/química , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Carbono
10.
Commun Biol ; 5(1): 990, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123525

RESUMEN

TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.


Asunto(s)
Anoctaminas , Proteínas de Transferencia de Fosfolípidos , Anoctaminas/química , Anoctaminas/genética , Anoctaminas/metabolismo , Membrana Celular/metabolismo , Conductividad Eléctrica , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo
11.
Front Mol Biosci ; 9: 903972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942471

RESUMEN

The TMEM16 family of transmembrane proteins includes Ca2+-activated phospholipid scramblases (PLS) that can also function as non-selective ion channels. Extensive structural and functional studies have established that a membrane-exposed hydrophilic groove in TMEM16 PLS can serve as a translocation pathway for lipids. However, it is still unclear how the TMEM16 PLS conduct ions. A "protein-delimited pore" model suggests that ions are translocated through a narrow opening of the groove region, which is not sufficiently wide to allow lipid movement, whereas a "proteolipidic pore" model envisions ions and lipids translocating through an open conformation of the groove. We investigated the dynamic path of potassium ion (K+) translocation that occurs when an open groove state of nhTMEM16 is obtained from long atomistic molecular dynamics (MD) simulations, and calculated the free energy profile of the ion movement through the groove with umbrella sampling methodology. The free energy profile identifies effects of specific interactions along the K+ permeation path. The same calculations were performed to investigate ion permeation through a groove closed to lipid permeation in the nhTMEM16 L302A mutant which exhibits a stable conformation of the groove that does not permit lipid scrambling. Our results identify structural and energy parameters that enable K+ permeation, and suggest that the presence of lipids in the nhTMEM16 groove observed in the simulations during scrambling or in/out diffusion, affect the efficiency of K+ permeation to various extents.

12.
Structure ; 30(8): 1208-1217.e2, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35660161

RESUMEN

Class A (rhodopsin-like) G protein-coupled receptors (GPCRs) are constitutive phospholipid scramblases as evinced after their reconstitution into liposomes. Yet phospholipid scrambling is not detectable in the resting plasma membrane of mammalian cells that is replete with GPCRs. We considered whether cholesterol, a prominent component of the plasma membrane, limits the ability of GPCRs to scramble lipids. Our previous Markov State Model (MSM) analysis of molecular dynamics simulations of membrane-embedded opsin indicated that phospholipid headgroups traverse a dynamically revealed hydrophilic groove between transmembrane helices (TM) 6 and 7 while their tails remain in the bilayer. Here, we present comparative MSM analyses of 150-µs simulations of opsin in cholesterol-free and cholesterol-rich membranes. Our analyses reveal that cholesterol inhibits phospholipid scrambling by occupying the TM6/7 interface and stabilizing the closed groove conformation while itself undergoing flip-flop. This mechanism may explain the inability of GPCRs to scramble lipids at the plasma membrane.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos , Receptores Acoplados a Proteínas G , Animales , Transporte Biológico , Colesterol , Membrana Dobles de Lípidos , Mamíferos/metabolismo , Opsinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
13.
J Biol Chem ; 298(7): 102058, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605664

RESUMEN

There is substantial evidence for extensive nonvesicular sterol transport in cells. For example, lipid transfer by the steroidogenic acute regulator-related proteins (StarD) containing a StarT domain has been shown to involve several pathways of nonvesicular trafficking. Among the soluble StarT domain-containing proteins, StarD4 is expressed in most tissues and has been shown to be an effective sterol transfer protein. However, it was unclear whether the lipid composition of donor or acceptor membranes played a role in modulating StarD4-mediated transport. Here, we used fluorescence-based assays to demonstrate a phosphatidylinositol phosphate (PIP)-selective mechanism by which StarD4 can preferentially extract sterol from liposome membranes containing certain PIPs (especially, PI(4,5)P2 and to a lesser degree PI(3,5)P2). Monophosphorylated PIPs and other anionic lipids had a smaller effect on sterol transport. This enhancement of transport was less effective when the same PIPs were present in the acceptor membranes. Furthermore, using molecular dynamics (MD) simulations, we mapped the key interaction sites of StarD4 with PIP-containing membranes and identified residues that are important for this interaction and for accelerated sterol transport activity. We show that StarD4 recognizes membrane-specific PIPs through specific interaction with the geometry of the PIP headgroup as well as the surrounding membrane environment. Finally, we also observed that StarD4 can deform membranes upon longer incubations. Taken together, these results suggest a mechanism by which PIPs modulate cholesterol transfer activity via StarD4.


Asunto(s)
Proteínas de Transporte de Membrana , Esteroles , Transporte Biológico , Liposomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfatos de Fosfatidilinositol , Esteroles/metabolismo
14.
Biophys J ; 121(19): 3753-3764, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35459639

RESUMEN

B cell translocation gene 1 (BTG1) protein belongs to the BTG/transducer of ERBB2 (TOB) family of antiproliferative proteins whose members regulate various key cellular processes such as cell cycle progression, apoptosis, and differentiation. Somatic missense mutations in BTG1 are found in ∼70% of a particularly malignant and disseminated subtype of diffuse large B cell lymphoma (DLBCL). Antiproliferative activity of BTG1 has been linked to its ability to associate with transcriptional cofactors and various enzymes. However, molecular mechanisms underlying these functional interactions and how the disease-linked mutations in BTG1 affect these mechanisms are currently unknown. To start filling these knowledge gaps, here, using atomistic molecular dynamics (MD) simulations, we explored structural, dynamic, and kinetic characteristics of BTG1 protein, and studied how various DLBCL mutations affect these characteristics. We focused on the protein region formed by α2 and α4 helices, as this interface has been reported not only to serve as a binding hotspot for several cellular partners but also to harbor sites for the majority of known DLBCL mutations. Markov state modeling analysis of extensive MD simulations revealed that the α2-α4 interface in the wild-type (WT) BTG1 undergoes conformational transitions between closed and open metastable states. Importantly, we show that some of the mutations in this region that are observed in DLBCL, such as Q36H, F40C, Q45P, E50K (in α2), and A83T and A84E (in α4), either overstabilize one of these two metastable states or give rise to new conformations in which these helices are distorted (i.e., kinked or unfolded). Based on these results, we conclude that the rapid interconversion between the closed and open conformations of the α2-α4 interface is an essential component of the BTG1 functional dynamics that can prime the protein for functional associations with its binding partners. Disruption of the native dynamic equilibrium by DLBCL mutants leads to the ensemble of conformations in BTG1 that are unlikely structurally and/or kinetically to enable productive functional interactions with the binding proteins.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Neoplasias , Apoptosis , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
15.
ACS Chem Neurosci ; 13(7): 987-1001, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35258946

RESUMEN

Abnormal aggregation of amyloid ß (Aß) peptides into fibrils plays a critical role in the development of Alzheimer's disease. A two-stage "dock-lock" model has been proposed for the Aß fibril elongation process. However, the mechanisms of the Aß monomer-fibril binding process have not been elucidated with the necessary molecular-level precision, so it remains unclear how the lock phase dynamics leads to the overall in-register binding of the Aß monomer onto the fibril. To gain mechanistic insights into this critical step during the fibril elongation process, we used molecular dynamics (MD) simulations with a physics-based coarse-grained UNited-RESidue (UNRES) force field and sampled extensively the dynamics of the lock phase process, in which a fibril-bound Aß(9-40) peptide rearranged to establish the native docking conformation. Analysis of the MD trajectories with Markov state models was used to quantify the kinetics of the rearrangement process and the most probable pathways leading to the overall native docking conformation of the incoming peptide. These revealed a key intermediate state in which an intra-monomer hairpin is formed between the central core amyloidogenic patch 18VFFA21 and the C-terminal hydrophobic patch 34LMVG37. This hairpin structure is highly favored as a transition state during the lock phase of the fibril elongation. We propose a molecular mechanism for facilitation of the Aß fibril elongation by amyloidogenic hydrophobic patches.


Asunto(s)
Péptidos beta-Amiloides , Fragmentos de Péptidos , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Cinética , Simulación de Dinámica Molecular , Fragmentos de Péptidos/metabolismo
16.
Annu Rev Biophys ; 51: 39-61, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34932914

RESUMEN

Rapid flip-flop of phospholipids across the two leaflets of biological membranes is crucial for many aspects of cellular life. The transport proteins that facilitate this process are classified as pump-like flippases and floppases and channel-like scramblases. Unexpectedly, Class A G protein-coupled receptors (GPCRs), a large class of signaling proteins exemplified by the visual receptor rhodopsin and its apoprotein opsin, are constitutively active as scramblases in vitro. In liposomes, opsin scrambles lipids at a unitary rate of >100,000 per second. Atomistic molecular dynamics simulations of opsin in a lipid membrane reveal conformational transitions that expose a polar groove between transmembrane helices 6 and 7. This groove enables transbilayer lipid movement, conceptualized as the swiping of a credit card (lipid) through a card reader (GPCR). Conformational changes that facilitate scrambling are distinct from those associated with GPCR signaling. In this review, we discuss the physiological significance of GPCR scramblase activity and the modes of its regulation in cells.


Asunto(s)
Opsinas , Proteínas de Transferencia de Fosfolípidos , Transporte Biológico , Opsinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G
17.
Nature ; 595(7866): 315-319, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34135507

RESUMEN

Docosahexaenoic acid is an omega-3 fatty acid that is essential for neurological development and function, and it is supplied to the brain and eyes predominantly from dietary sources1-6. This nutrient is transported across the blood-brain and blood-retina barriers in the form of lysophosphatidylcholine by major facilitator superfamily domain containing 2A (MFSD2A) in a Na+-dependent manner7,8. Here we present the structure of MFSD2A determined using single-particle cryo-electron microscopy, which reveals twelve transmembrane helices that are separated into two pseudosymmetric domains. The transporter is in an inward-facing conformation and features a large amphipathic cavity that contains the Na+-binding site and a bound lysolipid substrate, which we confirmed using native mass spectrometry. Together with our functional analyses and molecular dynamics simulations, this structure reveals details of how MFSD2A interacts with substrates and how Na+-dependent conformational changes allow for the release of these substrates into the membrane through a lateral gate. Our work provides insights into the molecular mechanism by which this atypical major facility superfamily transporter mediates the uptake of lysolipids into the brain, and has the potential to aid in the delivery of neurotherapeutic agents.


Asunto(s)
Transporte Biológico , Barrera Hematoencefálica/metabolismo , Microscopía por Crioelectrón , Ácidos Grasos Omega-3/metabolismo , Simportadores/química , Simportadores/metabolismo , Animales , Sitios de Unión , Pollos , Ácidos Grasos Omega-3/química , Espectrometría de Masas , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios Proteicos , Sodio/metabolismo , Simportadores/ultraestructura
18.
Nature ; 594(7863): 385-390, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135520

RESUMEN

Understanding structural dynamics of biomolecules at the single-molecule level is vital to advancing our knowledge of molecular mechanisms. Currently, there are few techniques that can capture dynamics at the sub-nanometre scale and in physiologically relevant conditions. Atomic force microscopy (AFM)1 has the advantage of analysing unlabelled single molecules in physiological buffer and at ambient temperature and pressure, but its resolution limits the assessment of conformational details of biomolecules2. Here we present localization AFM (LAFM), a technique developed to overcome current resolution limitations. By applying localization image reconstruction algorithms3 to peak positions in high-speed AFM and conventional AFM data, we increase the resolution beyond the limits set by the tip radius, and resolve single amino acid residues on soft protein surfaces in native and dynamic conditions. LAFM enables the calculation of high-resolution maps from either images of many molecules or many images of a single molecule acquired over time, facilitating single-molecule structural analysis. LAFM is a post-acquisition image reconstruction method that can be applied to any biomolecular AFM dataset.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/normas , Algoritmos , Aminoácidos/química , Anexina A5/química , Anexina A5/ultraestructura , Acuaporinas/química , Acuaporinas/ultraestructura , Canales de Cloruro/química , Canales de Cloruro/ultraestructura , Conjuntos de Datos como Asunto , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular
20.
Sci Rep ; 11(1): 10536, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006992

RESUMEN

Mutations in the G protein-coupled receptor (GPCR) rhodopsin are a common cause of autosomal dominant retinitis pigmentosa, a blinding disease. Rhodopsin self-associates in the membrane, and the purified monomeric apo-protein opsin dimerizes in vitro as it transitions from detergent micelles to reconstitute into a lipid bilayer. We previously reported that the retinitis pigmentosa-linked F220C opsin mutant fails to dimerize in vitro, reconstituting as a monomer. Using fluorescence-based assays and molecular dynamics simulations we now report that whereas wild-type and F220C opsin display distinct dimerization propensities in vitro as previously shown, they both dimerize in the plasma membrane of HEK293 cells. Unexpectedly, molecular dynamics simulations show that F220C opsin forms an energetically favored dimer in the membrane when compared with the wild-type protein. The conformation of the F220C dimer is unique, with transmembrane helices 5 and 6 splayed apart, promoting widening of the intracellular vestibule of each protomer and influx of water into the protein interior. FRET experiments with SNAP-tagged wild-type and F220C opsin expressed in HEK293 cells are consistent with this conformational difference. We speculate that the unusual mode of dimerization of F220C opsin in the membrane may have physiological consequences.


Asunto(s)
Retinitis Pigmentosa/metabolismo , Rodopsina/metabolismo , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Micelas , Simulación de Dinámica Molecular , Opsinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...