Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Med Sci ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701970

RESUMEN

Hepatitis C virus is an important global cause of hepatitis and subsequently cirrhosis and hepatocellular carcinoma. These infections may also cause extrahepatic manifestations, including insulin resistance and type 2 diabetes mellitus. These two complications can potentially reduce sustained virologic responses (SVR) in some drug regimens for this infection. Metformin has important biochemical effects that can limit viral replication in cellular cultures and can improve the response to antiviral drug therapy based on ribavirin and interferon. Clinical studies comparing treatment regimens with interferon, ribavirin, metformin with these regimens without metformin have demonstrated that metformin increases viral clearance, establishes higher rates of SVRs, and increases insulin sensitivity. Metformin also reduces the frequency of hepatocellular carcinoma in patients who have had SVRs. Larger treatment trials are needed to determine metformin's short-term and long-term treatment effects in patients with diabetes using newer antiviral drugs. In particular, if metformin reduces the frequency of cirrhosis and hepatocellular carcinoma, this would significantly reduce the morbidity and mortality associated with this infection.

2.
Ageing Res Rev ; 97: 102291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614367

RESUMEN

The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Nanopartículas/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas
3.
Aging Dis ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607732

RESUMEN

Alzheimer's disease (AD) and Alzheimer's disease-related disorders (ADRD) are progressive neurodegenerative diseases without cure. Alzheimer's disease occurs in 2 forms, early-onset familial AD and late-onset sporadic AD. Early-onset AD is a rare (~1%), autosomal dominant, caused by mutations in presenilin-1, presenilin-2, and amyloid precursor protein genes and the other is a late-onset, prevalent and is evolved due to age-associated complex interactions between environmental and genetic factors, in addition to apolipoprotein E4 polymorphism. Cellular senescence, promoting the impairment of physical and mental functions is constituted to be the main cause of aging, the primary risk factor for AD, which results in progressive loss of cognitive function, memory, and visual-spatial skills for an individual to live or act independently. Despite significant progress in the understanding of the biology and pathophysiology of AD, we continue to lack definitive early detectable biomarkers and/or drug targets that can be used to delay the development of AD and ADRD in elderly populations. However, recent developments in the studies of DNA double-strand breaks result in the release of fragmented DNA into the bloodstream and contribute to higher levels of cell-free DNA (cf-DNA). This fragmented cf-DNA can be released into the bloodstream from various cell types, including normal cells and cells undergoing apoptosis or necrosis and elevated levels of cf-DNA in the blood have the potential to serve as blood blood-based biomarker for early detection of AD and ADRD. The overall goal of our study is to discuss the latest developments in circulating cell-free DNA into the blood in the progression of AD and ADRD. Our article summarized the status of research on double-strand breaks and circulating cell-free DNA in both healthy and disease states and how these recent developments can be used to develop early detectable biomarkers for AD and ADRD. Our article also discussed the impact of lifestyle and epigenetic factors that are involved in DNA double-strand breaks and circulating cell-free DNA in AD and ADRD.

4.
Ageing Res Rev ; 91: 102091, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832608

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by memory loss and multiple cognitive impairments. Genetic mutations cause a small proportion (1-2%) of early-onset AD, with mutations in amyloid precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2). Major contributing factors of late-onset AD are ApoE4 genotype, traumatic brain injury, diabetes, obesity, hypertension, cardiovascular conditions, in addition to lifestyle factors, such as unhealthy diet and lack of physical exercise. Disease progression can be delayed and/or prevented to a greater extent by adopting healthy lifestyle with balanced and antioxidant enriched diet and daily exercise. The interaction and interplay of diet, exercise, age, and pharmacological interventions holds a crucial role in the progression, pathogenesis and management of AD and its comorbidities, including diabetes, obesity, hypertension and cardiovascular conditions. Antioxidant enriched diet contributes to brain health, glucose control, weight management, and cardiovascular well-being. Regular exercise removes toxins including free radicals and enhances insulin sensitivity, and supports cardiovascular function. In the current article, we discussed, the role of diet, and exercise in aging, AD and other conditions including diabetes, obesity, hypertension, cardiovascular conditions. This article also highlights the impact of medication, socioeconomic and lifestyle factors, and pharmacological interventions. These aspects were discussed in different races and ethnic groups in Texas, and the US.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , Hipertensión , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Antioxidantes , Precursor de Proteína beta-Amiloide/metabolismo , Ejercicio Físico , Envejecimiento , Enfermedad Crónica , Obesidad , Dieta , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...