Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Commun Signal ; 17(3): 957-974, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37040029

RESUMEN

Tumor protein D52 (TPD52) is a proto-oncogene overexpressed in prostate cancer (PCa) due to gene amplification and it is involved in the cancer progression of many cancers including PCa. However, the molecular mechanisms underlying the role of TPD52 in cancer progression are still under investigation. In this study, we report that the activation of AMP-activated protein kinase (AMPK) by AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide) inhibited the LNCaP and VCaP cells growth by silencing TPD52 expression. Activation of AMPK inhibited the proliferation and migration of LNCaP and VCaP cells. Interestingly, AICAR treatment to LNCaP and VCaP cells led to the downregulation of TPD52 via activation of GSK3ß by a decrease of inactive phosphorylation at Ser9. Moreover, in AICAR treated LNCaP cells, inhibition of GSK3ß by LiCl attenuated downregulation of TPD52 indicating that AICAR acts via GSK3ß. Furthermore, we found that TPD52 interacts with serine/threonine kinase 11 or Liver kinase B1 (LKB1) a known tumor suppressor and an upstream kinase for AMPK. The molecular modeling and MD simulations indicates that the interaction between TPD52 and LKB1 leads to inhibition of the kinase activity of LKB1 as its auto-phosphorylation sites were masked in the complex. Consequently, TPD52-LKB1 interaction may lead to inactivation of AMPK. Moreover, overexpression of TPD52 is found to be responsible for the reduction of pLKB1 (Ser428) and pAMPK (Thr172). Therefore, TPD52 may be playing its oncogenic role via suppressing the AMPK activation. Altogether, our results revealed a new mechanism of PCa progression in which TPD52 overexpression inhibits AMPK activation by interacting with LKB1. These results support that the use of AMPK activators and/or small molecules that could disrupt the TPD52-LKB1 interaction might be useful to suppress PCa cell growth. TPD52 interacts LKB1 and interfere with activation of AMPK in PCa cells.

2.
Int J Biochem Cell Biol ; 147: 106232, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35644470

RESUMEN

Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is overexpressed in prostate cancer (PCa) and promotes PCa progression in in vivo through the ADMA-NO pathway by degrading nitric oxide synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA) and monomethylamine arginine (L-NMMA). In this study, we investigated the molecular mechanism involved in the overexpression of DDAH1 in PCa and examined its potential role as a therapeutic target. We observed that DDAH1expression is elevated in PCa (PC3, LNCaP, and DU145) cell lines under hypoxia. ChIP and reporter assay results confirmed that DDAH1 expression is positively regulated by HIF-1α through directly binding to the hypoxia response elements (HRE) located within the promoter region between - 1242/- 1238 upstream of its transcription start site (TSS). Under hypoxia, HIF-1α is translocated into the nucleus and activates its target gene expression in PC3 cells. Interestingly, in the event of HIF-1α inhibition or siRNA-mediated knockdown, an alternative transcription factor Nrf2 promotes DDAH1 expression through antioxidant response elements (AREs) on its promoter. ChIP assay results showed that Nrf2 binds to AREs located between -1016 / -1008 bp from the TSS of DDAH1. Furthermore, knockdown of PCa therapeutic target HSP90, an essential co-factor for both HIF-1α and Nrf2 causes attenuation of hypoxia induced DDAH1 overexpression in PCa cells. These results demonstrate that hypoxia induced upregulation of DDAH1 expression is positively regulated by HIF-1α and Nrf2 in association with HSP90. Therefore, targeting tumor angiogenesis promoting DDAH1 along with standard androgen receptor (AR) targeted therapy may offer an effective strategy to prevent PCa progression.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Factor 2 Relacionado con NF-E2 , Neoplasias de la Próstata , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Células PC-3 , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/patología , Hipoxia Tumoral
3.
Cell Signal ; 91: 110240, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34986386

RESUMEN

Neuroendocrine prostate cancer (NEPC) is an aggressive, androgen independent PCa and it is detected in patients undergoing androgen deprivation therapy (ADT). Interleukin-6 (IL-6) is a pleiotropic cytokine elevated in PCa patients promotes neuroendocrine differentiation (NED). In this study, PCa cells were differentiated with IL-6 in in-vitro to identify novel targets or signaling pathways associated with emergence of NEPC on deprivation of androgens. From the results, we observed an activation of TGF-ß signaling pathway is altered through multiple proteins in differentiated LNCaP cells. Hence, we investigated the role of TGF-ß axis in PCa cells differentiation. LNCaP cells treated with IL-6 in androgens deprived media release excess TGF-ß ligand and this as conditioned media added to cells stimulated NED of PCa cells. TGF-ß released by IL-6 stimulated cells activate p38MAPK through SMAD2 thereby promote NED. Inhibition of TGF-ßRI and TGF-ßRII signaling activation in LNCaP cells treated with IL-6 did not reversed the NED of cells, possibly due to the reason that the inhibition of TGF-ß axis is further activating p38MAPK through SMAD independent manner in PCa cells. However, siRNA mediated knock down or inhibition p38MAPK inactivated TGF-ß - SMAD axis in differentiating cells and attenuated NED of LNCaP cells. This result suggests that p38MAPK is the central node for receiving IL-6 signals and promotes NED of LNCaP cells in androgens free media. Remarkably, downregulation or inhibition of p38MAPK in NCI-H660 reversed NED characteristics as well as markers along with inactivation of SMAD2 whereas no effect observed in WPMY-1 normal prostate cells. Taken together these findings unveil that p38MAPK and its upstream regulators are potential targets to overcome the progression of NED of PCa and develop novel therapeutic measures along ADT for effective treatment of PCa.


Asunto(s)
Interleucina-6 , Neoplasias de la Próstata , Antagonistas de Andrógenos , Línea Celular Tumoral , Humanos , Interleucina-6/metabolismo , Masculino , Neoplasias de la Próstata/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119085, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34171447

RESUMEN

Neuroendocrine Prostate Cancer (NEPC) is an aggressive form of androgen independent prostate cancer (AIPC), correlated with therapeutic resistance. Interleukin (IL)-6 promotes proliferation and neuroendocrine differentiation (NED) of androgen dependent LNCaP cells. We treated LNCaP cells with IL-6 and observed for in vitro NED of cells and also expression of NE markers ßIII tubulin, neuron-specific enolase (NSE) and chromogranin A (ChA). Here we investigated the proteins and/or pathways involved in NED of LNCaP cells induced by IL-6 and characterized their role in NED of PCa cells. We found that the altered proteins modulated AMPK signaling pathway in NE cells. Remarkably, IL-6 induces NED of LNCaP cells through activation of AMPK and SIRT1 and also both of these are co-regulated while playing a predominant role in NED of LNCaP cells. Of the few requirements of AMPK-SIRT1 activation, increased eNOS is essential for NED by elevating Nitric oxide (NO) levels. Pleiotropic effects of NO ultimately regulate p38MAPK in IL-6 induced NED. Hence, IL-6 induced AMPK-SIRT1 activation eventually transfers its activation signals through p38MAPK for advancing NED of LNCaP cells. Moreover, inactivation of p38MAPK with specific inhibitor (SB203580) attenuated IL-6 induced NED of LNCaP cells. Therefore, IL-6 promotes NED of PCa cells via AMPK/SIRT1/p38MAPK signaling. Finally, targeting AMPK-SIRT1 or p38MAPK in androgen independent PC3 cells with neuroendocrine features reversed their neuroendocrine characteristics. Taken together these novel findings reveal that targeting p38MAPK mitigated NED of PCa cells, and thus it can be a favorable target to overcome progression of NEPC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Carcinoma Neuroendocrino/metabolismo , Interleucina-6/metabolismo , Neoplasias de la Próstata/metabolismo , Sirtuina 1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Carcinoma Neuroendocrino/patología , Diferenciación Celular , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/patología , Transducción de Señal , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...