Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38697010

RESUMEN

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Asunto(s)
ADN Bacteriano , Escherichia coli , Microscopía Fluorescente , Imagen Individual de Molécula , Microscopía Fluorescente/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Imagen Individual de Molécula/métodos , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Respuesta SOS en Genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Unión Proteica , Rec A Recombinasas/metabolismo , Rec A Recombinasas/genética , Pinzas Ópticas
3.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752045

RESUMEN

The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways in eukaryotic cells. Abnormal functioning of this system has been observed in cancer and neurological diseases. The 20S proteasomes, essential components of the UPS, are present not only within the cells but also in the extracellular space, and their concentration in blood plasma has been found to be elevated and dependent upon the disease state, being of prognostic significance in patients suffering from cancer, liver diseases, and autoimmune diseases. However, functions of extracellular proteasomes and mechanisms of their release by cells remain largely unknown. The main mechanism of proteasome activity regulation is provided by modulation of their composition and post-translational modifications (PTMs). Moreover, diverse PTMs of proteins are known to participate in the loading of specific elements into extracellular vesicles. Since previous studies have revealed that the transport of extracellular proteasomes may occur via extracellular vesicles, we have set out to explore the PTMs of extracellular proteasomes in comparison to cellular counterparts. In this work, cellular and extracellular proteasomes were affinity purified and separated by SDS-PAGE for subsequent trypsinization and matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) analysis. In total, we could identify 64 and 55 PTM sites in extracellular and cellular proteasomes, respectively, including phosphorylation, ubiquitination, acetylation, and succinylation. We observed novel sites of acetylation at K238 and K192 of the proteasome subunits ß2 and ß3, respectively, that are specific for extracellular proteasomes. Moreover, cellular proteasomes show specific acetylation at K227 of α2 and ubiquitination at K201 of ß3. Interestingly, succinylation of ß6 at the residue K228 seems not to be present exclusively in extracellular proteasomes, whereas both extracellular and cellular proteasomes may also be acetylated at this site. The same situation takes place at K201 of the ß3 subunit where ubiquitination is seemingly specific for cellular proteasomes. Moreover, crosstalk between acetylation, ubiquitination, and succinylation has been observed in the subunit α3 of both proteasome populations. These data will serve as a basis for further studies, aimed at dissection of the roles of extracellular proteasome-specific PTMs in terms of the function of these proteasomes and mechanism of their transport into extracellular space.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Humanos , Células K562 , Péptidos/análisis , Péptidos/química , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ubiquitina/metabolismo , Ubiquitinación
4.
Stem Cells ; 37(8): 1018-1029, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31021473

RESUMEN

The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.


Asunto(s)
Proliferación Celular , Cromatina/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Supervivencia Celular , Cromatina/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ratones , Factores de Transcripción/genética
5.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223436

RESUMEN

The persistence of high concentrations of beta-2-microglobulin (ß2M) in the blood of patients with acute renal failure leads to the development of the dialysis-related amyloidosis. This disease manifests in the deposition of amyloid fibrils formed from the various forms of ß2M in the tissues and biological fluids of patients. In this paper, the amyloid fibrils formed from the full-length ß2M (ß2m) and its variants that lack the 6 and 10 N-terminal amino acids of the protein polypeptide chain (ΔN6ß2m and ΔN10ß2m, respectively) were probed by using the fluorescent dye thioflavin T (ThT). For this aim, the tested solutions were prepared via the equilibrium microdialysis approach. Spectroscopic analysis of the obtained samples allowed us to detect one binding mode (type) of ThT interaction with all the studied variants of ß2M amyloid fibrils with affinity ~104 M-1. This interaction can be explained by the dye molecules incorporation into the grooves that were formed by the amino acids side chains of amyloid protofibrils along the long axis of the fibrils. The decrease in the affinity and stoichiometry of the dye interaction with ß2M fibrils, as well as in the fluorescence quantum yield and lifetime of the bound dye upon the shortening of the protein amino acid sequence were shown. The observed differences in the ThT-ß2M fibrils binding parameters and characteristics of the bound dye allowed to prove not only the difference of the ΔN10ß2m fibrils from other ß2M fibrils (that can be detected visually, for example, by transmission electron microscopy (TEM), but also the differences between ß2m and ΔN6ß2m fibrils (that can not be unequivocally confirmed by other approaches). These results prove an essential role of N-terminal amino acids of the protein in the formation of the ß2M amyloid fibrils. Information about amyloidogenic protein sequences can be claimed in the development of ways to inhibit ß2M fibrillogenesis for the treatment of dialysis-related amyloidosis.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Benzotiazoles , Colorantes Fluorescentes , Imagen Molecular , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Amiloide/ultraestructura , Amiloidosis/metabolismo , Amiloidosis/patología , Dicroismo Circular , Humanos , Cinética , Espectrometría de Masas , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Unión Proteica , Espectrofotometría Ultravioleta
6.
Oncotarget ; 8(60): 102134-102149, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29254231

RESUMEN

Proteasome-mediated proteolysis is important for many basic cellular processes. In addition to their functions in the cell, proteasomes have been found in physiological fluids of both healthy and diseased humans including cancer patients. Higher levels of these proteasomes are associated with higher cancer burden and stage. The etiology and functions of these proteasomes, referred to as circulating, plasmatic, or extracellular proteasomes (ex-PSs), are unclear. Here we show that human cancer cell lines, as well as human endometrium-derived mesenchymal stem cells (hMESCs), release proteasome complexes into culture medium (CM). To define ex-PS composition, we have affinity purified them from CM conditioned by human leukemia cell line K562. Using matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS), we have identified core 20S proteasome subunits and a set of 15 proteasome-interacting proteins (PIPs), all previously described as exosome cargo proteins. Three of them, PPIase A, aldolase A, and transferrin, have never been reported as PIPs. The study provides compelling arguments that ex-PSs do not contain 19S or PA200 regulatory particles and are represented exclusively by the 20S complex.

7.
Microbiologyopen ; 5(3): 378-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26840800

RESUMEN

FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction.


Asunto(s)
Proteínas Bacterianas/genética , División Celular/genética , Proteínas del Citoesqueleto/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , División Celular/fisiología , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Fluorescente , Tubulina (Proteína)/genética
8.
Amyloid ; 22(2): 100-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26053105

RESUMEN

The effect of yeast red pigment on amyloid-ß (Aß) aggregation and fibril growth was studied in yeasts, fruit flies and in vitro. Yeast strains accumulating red pigment (red strains) contained less amyloid and had better survival rates compared to isogenic strains without red pigment accumulation (white strains). Confocal and fluorescent microscopy was used to visualise fluorescent Aß-GFP aggregates. Yeast cells containing less red pigment had more Aß-GFP aggregates despite the lower level of overall GFP fluorescence. Western blot analysis with anti-GFP, anti-Aß and A11 antibodies also revealed that red cells contained a considerably lower amount of Aß GFP aggregates as compared to white cells. Similar results were obtained with exogenous red pigment that was able to penetrate yeast cells. In vitro experiments with thioflavine and TEM showed that red pigment effectively decreased Aß fibril growth. Transgenic flies expressing Aß were cultivated on medium containing red and white isogenic yeast strains. Flies cultivated on red strains had a significant decrease in Aß accumulation levels and brain neurodegeneration. They also demonstrated better memory and learning indexes and higher locomotor ability.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Saccharomyces cerevisiae/metabolismo , Enfermedad de Alzheimer/patología , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Drosophila melanogaster , Citometría de Flujo , Actividad Motora/fisiología , Fragmentos de Péptidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/patogenicidad
9.
Mol Biotechnol ; 57(1): 36-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25164490

RESUMEN

The proteasome is a multi-subunit protein complex that serves as a major pathway for intracellular protein degradation, playing important functions in various biological processes. The C-terminus of the ß7 (PSMB4) proteasome subunit was tagged with EGFP and with a composite element for affinity purification and TEV cleavage elution (HTBH). When the construct was retrovirally delivered into HeLa cells, virtually all of the ß7-EGFP-HTBH fusion protein was found to be incorporated into fully functional proteasomes. This ensured that subcellular localization of the EGFP signal in living HeLa cells could be attributed to ß7-EGFP-HTBH within the proteasome complex rather than to free protein. The ß7-EGFP-HTBH fusion can, therefore, serve as a valuable tool for in vivo imaging of proteasomes as well as for high-affinity purification of these complexes and associated molecules for subsequent analyses.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas Fluorescentes Verdes/metabolismo , Imagen Molecular , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Complejo de la Endopetidasa Proteasomal/metabolismo , Supervivencia Celular , Células HeLa , Humanos , Subunidades de Proteína/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión
10.
Yeast ; 28(7): 505-26, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21547947

RESUMEN

The intensity of amyloid-bound thioflavine T fluorescence was studied in crude lysates of yeast strains carrying mutations in the ADE1 or ADE2 genes and accumulating the red pigment (a result of polymerization of aminoimidazoleribotide), and in white isogenic strains--either adenine prototrophs or carrying mutations at the first stages of purine biosynthesis. We found that the red pigment leads to a drop of amyloid content. This result, along with the data on separation of protein polymers of white and red strains in PAGE, suggests that the red pigment inhibits amyloid fibril formation. The differences in transmission of the thioflavine T fluorescence pattern by cytoduction and in blot-hybridization of pellet proteins of red and white [PSI(+) ] strains with Sup35p antibodies confirmed this conclusion. Purified red pigment treatment also led to a decrease of fluorescence intensity of thioflavine T bound to insulin fibrils and to yeast pellet protein aggregates from [PSI(+) ] strains. This suggests red pigment interaction with amyloid fibrils. Comparison of pellet proteins from red and white isogenic strains separated by 2D-electrophoresis followed by MALDI analysis has allowed us to identify 48 pigment-dependent proteins. These proteins mostly belong to functional classes of chaperones and proteins involved in glucose metabolism, closely corresponding to prion-dependent proteins that we characterized previously. Also present were some proteins involved in stress response and proteolysis. We suppose that the red pigment acts by blocking certain sites on amyloid fibrils that, in some cases, can lead in vivo to interfere with their contacts with chaperones and the generation of prion seeds.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Pigmentos Biológicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tiazoles/metabolismo , Amiloide/genética , Benzotiazoles , Regulación hacia Abajo , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Mol Cell Biochem ; 347(1-2): 79-87, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20941529

RESUMEN

Transcription of eukaryotic genes is regulated by phosphorylation of serine residues of heptapeptide repeats of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII). We previously reported that protein phosphatase-1 (PP1) dephosphorylates RNAPII CTD in vitro and inhibition of nuclear PP1-blocked viral transcription. In this article, we analyzed the targeting of RNAPII by PP1 using biochemical and mass spectrometry analysis of RNAPII-associated regulatory subunits of PP1. Immunoblotting showed that PP1 co-elutes with RNAPII. Mass spectrometry approach showed the presence of U2 snRNP. Co-immunoprecipitation analysis points to NIPP1 and PNUTS as candidate regulatory subunits. Because NIPP1 was previously shown to target PP1 to U2 snRNP, we analyzed the effect of NIPP1 on RNAPII phosphorylation in cultured cells. Expression of mutant NIPP1 promoted RNAPII phosphorylation suggesting that the deregulation of cellular NIPP1/PP1 holoenzyme affects RNAPII phosphorylation and pointing to NIPP1 as a potential regulatory factor in RNAPII-mediated transcription.


Asunto(s)
Espectrometría de Masas , Proteína Fosfatasa 1/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Dominio Catalítico , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA