Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol ; 147(1): 80, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714540

RESUMEN

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Esclerosis Tuberosa , Interneuronas/patología , Interneuronas/metabolismo , Esclerosis Tuberosa/patología , Esclerosis Tuberosa/metabolismo , Humanos , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/metabolismo , Masculino , Femenino , Eminencia Media/patología , Eminencia Media/metabolismo , Somatostatina/metabolismo , Niño , Preescolar , Receptores de GABA-A/metabolismo , Adolescente , Eminencia Ganglionar
2.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766140

RESUMEN

Midbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage 1-3 . As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days 4,5 , the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain. We found extensive rewiring of 3D genome architecture at 24 hours past exposure which remains or worsens by 14 days, outlasting transcriptional responses. The cocaine-induced chromatin rewiring occurs at all genomic scales and affects genes with major roles in cocaine-induced synaptic changes. A single cocaine exposure triggers extensive long-lasting changes in chromatin condensation in post-synaptic and post-transcriptional regulatory genes, for example the unfolding of Rbfox1 which becomes most prominent 14 days post exposure. Finally, structurally remodeled genes are most expressed in a specific DN sub-type characterized by low expression of the dopamine auto-receptor Drd2 , a key feature of highly cocaine-sensitive cells. These results reveal an important role for long-lasting 3D genome remodelling in the cellular memory of a single cocaine exposure, providing new hypotheses for understanding the inception of drug addiction and 3D genome plasticity.

3.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559123

RESUMEN

Recently, single-cell RNA-sequencing (scRNA-seq) has enabled unprecedented insights to the cellular landscape of the brains of many different species, among them the rhesus macaque as a key animal model. Building on previous, broader surveys of the macaque brain, we closely examined five immediately neighboring areas within the visual cortex of the rhesus macaque: V1, V2, V4, MT and TEO. To facilitate this, we first devised a novel pipeline for brain spatial archive - the BrainSPACE - which enabled robust archiving and sampling from the whole unfixed brain. SnRNA-sequencing of ~100,000 nuclei from visual areas V1 and V4 revealed conservation within the GABAergic neuron subtypes, while seven and one distinct principle neuron subtypes were detected in V1 and V4, respectively, all most likely located in layer 4. Moreover, using small molecule fluorescence in situ hybridization, we identified cell type density gradients across V1, V2, V4, MT, and TEO appearing to reflect the visual hierarchy. These findings demonstrate an association between the clear areal specializations among neighboring areas with the hierarchical levels within the visual cortex of the rhesus macaque.

4.
Nat Rev Drug Discov ; 23(3): 218-231, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38114612

RESUMEN

In spite of major efforts and investment in development of psychiatric drugs, many clinical trials have failed in recent decades, and clinicians still prescribe drugs that were discovered many years ago. Although multiple reasons have been discussed for the drug development deadlock, we focus here on one of the major possible biological reasons: differences between the characteristics of drug targets in preclinical models and the corresponding targets in patients. Importantly, based on technological advances in single-cell analysis, we propose here a framework for the use of available and newly emerging knowledge from single-cell and spatial omics studies to evaluate and potentially improve the translational predictivity of preclinical models before commencing preclinical and, in particular, clinical studies. We believe that these recommendations will improve preclinical models and the ability to assess drugs in clinical trials, reducing failure rates in expensive late-stage trials and ultimately benefitting psychiatric drug discovery and development.


Asunto(s)
Sistemas de Liberación de Medicamentos , Trastornos Mentales , Humanos , Descubrimiento de Drogas , Desarrollo de Medicamentos , Trastornos Mentales/tratamiento farmacológico
5.
Front Cell Neurosci ; 17: 1284394, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089143

RESUMEN

Introduction: Constitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network. Methods: We employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment. Results: We found that TSC astrocytes show reduced maturity on RNA and protein level as well as the inability to clear excess glutamate through the loss of both enzymes and transporters complementary to a reduction of phagocytic capabilities. Discussion: Our study provides evidence of mechanistic alterations in TSC astrocytes, underscoring the significant impairment of their supportive functions. These insights enhance our understanding of TSC pathophysiology and hold potential implications for future therapeutic interventions.

6.
Eur Neuropsychopharmacol ; 74: 32-46, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263043

RESUMEN

Disruption of brain development early in life may underlie the neurobiology behind schizophrenia. We have reported more immature synaptic spines in the frontal cortex (FC) of adult Roman High-Avoidance (RHA-I) rats, a behavioural model displaying schizophrenia-like traits. Here, we performed a whole transcriptome analysis in the FC of 4 months old male RHA-I (n=8) and its counterpart, the Roman Low-Avoidance (RLA-I) (n=8). We identified 203 significant genes with overrepresentation of genes involved in synaptic function. Next, we performed a gene set enrichment analysis (GSEA) for genes co-expressed during neurodevelopment. Gene networks were obtained by weighted gene co-expression network analysis (WGCNA) of a transcriptomic dataset containing human FC during lifespan (n=269). Out of thirty-one functional gene networks, six were significantly enriched in the RHA-I. These were differentially regulated during infancy and enriched in biological ontologies related to myelination, synaptic function, and immune response. We validated differential gene expression in a new cohort of adolescent (<=2 months old) and young-adult (>=3 months old) RHA-I and RLA-I rats. The results confirmed overexpression of Gsn, Nt5cd1, Ppp1r1b, and Slc9a3r1 in young-adult RHA-I, while Cables1, a regulator of Cdk5 phosphorylation in actin regulation and involved in synaptic plasticity and maturation, was significantly downregulated in adolescent RHA-I. This age-related expression change was also observed for presynaptic components Snap25 and Snap29. Our results show a different maturational expression profile of synaptic components in the RHA-I strain, supporting a shift in FC maturation underlying schizophrenia-like behavioural traits and adding construct validity to this strain as a neurodevelopmental model.


Asunto(s)
Esquizofrenia , Humanos , Ratas , Masculino , Animales , Adolescente , Lactante , Esquizofrenia/genética , Lóbulo Frontal , Fosforilación , Perfilación de la Expresión Génica , Reacción de Prevención/fisiología , Proteínas Qb-SNARE , Proteínas Qc-SNARE
8.
Mol Psychiatry ; 28(1): 34-43, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434058

RESUMEN

Neurodevelopmental disorders arise due to various risk factors that can perturb different stages of brain development, and a combinatorial impact of these risk factors programs the phenotype in adulthood. While modeling the complete phenotype of a neurodevelopmental disorder is challenging, individual developmental perturbations can be successfully modeled in vivo in animals and in vitro in human cellular models. Nevertheless, our limited knowledge of human brain development restricts modeling strategies and has raised questions of how well a model corresponds to human in vivo brain development. Recent progress in high-resolution analysis of human tissue with single-cell and spatial omics techniques has enhanced our understanding of the complex events that govern the development of the human brain in health and disease. This new knowledge can be utilized to improve modeling of neurodevelopmental disorders and pave the way to more accurately portraying the relevant developmental perturbations in disease models.


Asunto(s)
Trastornos del Neurodesarrollo , Animales , Humanos , Adulto , Trastornos del Neurodesarrollo/genética , Encéfalo , Fenotipo
9.
Sci Rep ; 12(1): 18975, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348001

RESUMEN

Glioma is a devastating brain tumor with a high mortality rate attributed to the glioma stem cells (GSCs) possessing high plasticity. Marker mutations in isocitrate dehydrogenase type 1 (IDH1) and tumor protein 53 (TP53) are frequent in gliomas and impact the cell fate decisions. Understanding the GSC heterogeneity within IDH1- and TP53- mutant tumors may elucidate possible treatment targets. Here, we performed single-nucleus transcriptomics of mutant and wild-type glioma samples sorted for Sox2 stem cell marker. For the first time the rare subpopulations of Sox2 + IDH1- and TP53-mutant GSCs were characterized. In general, GSCs contained the heterogeneity root subpopulation resembling active neural stem cells capable of asymmetric division to quiescent and transit amplifying cell branches. Specifically, double-mutant GSCs revealed the commitment on highly invasive oligodendrocyte- and astroglia-like progenitors. Additionally, double-mutant GSCs displayed upregulated markers of collagen synthesis, altered lipogenesis and high migration, while wild-type GSCs expressed genes related to ATP production. Wild-type GSC root population was highly heterogeneous and lacked the signature marker expression, thus glioblastoma treatment should emphasize on establishing differentiation protocol directed against residual GSCs. For the more differentiated IDH1- and TP53-mutant gliomas we suggest therapeutic targeting of migration molecules, such as CD44.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Transcriptoma , Glioma/patología , Neoplasias Encefálicas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Sci Adv ; 8(41): eabn8367, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36223459

RESUMEN

Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry. Compositional analysis of snRNA-seq data revealed a reduction in abundance of GABAergic neurons and a concomitant increase in principal neurons, most pronounced for upper cortical layer subtypes, which was substantiated by histological analysis. Many neuronal subtypes showed extensive transcriptomic changes, the most marked in upper-layer GABAergic neurons, including down-regulation in energy metabolism and up-regulation in neurotransmission. Transcription factor network analysis demonstrated a developmental origin of transcriptomic changes. Last, Visium spatial transcriptomics further corroborated upper-layer neuron vulnerability in schizophrenia. Overall, our results point toward general network impairment within upper cortical layers as a core substrate associated with schizophrenia symptomatology.


Asunto(s)
Esquizofrenia , Neuronas GABAérgicas/metabolismo , Humanos , Corteza Prefrontal/metabolismo , ARN Nuclear Pequeño/metabolismo , Esquizofrenia/patología , Factores de Transcripción/metabolismo
11.
Front Cell Dev Biol ; 10: 976549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046338

RESUMEN

Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.

12.
NPJ Breast Cancer ; 8(1): 81, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821504

RESUMEN

Normal breast luminal epithelial progenitors have been implicated as cell of origin in basal-like breast cancer, but their anatomical localization remains understudied. Here, we combine collection under the microscope of organoids from reduction mammoplasties and single-cell mRNA sequencing (scRNA-seq) of FACS-sorted luminal epithelial cells with multicolor imaging to profile ducts and terminal duct lobular units (TDLUs) and compare them with breast cancer subtypes. Unsupervised clustering reveals eleven distinct clusters and a differentiation trajectory starting with keratin 15+ (K15+) progenitors enriched in ducts. Spatial mapping of luminal progenitors is confirmed at the protein level by staining with critical duct markers. Comparison of the gene expression profiles of normal luminal cells with those of breast cancer subtypes suggests a strong correlation between normal breast ductal progenitors and basal-like breast cancer. We propose that K15+ basal-like breast cancers originate in ductal progenitors, which emphasizes the importance of not only lineages but also cellular position within the ductal-lobular tree.

13.
Mol Brain ; 15(1): 45, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578248

RESUMEN

Synaptic vesicle glycoprotein-2 (SV2) is a family of proteins consisting of SV2A, SV2B, and SV2C. This protein family has attracted attention in recent years after SV2A was shown to be an epileptic drug target and a perhaps a biomarker of synaptic density. So far, the anatomical localization of these proteins in the rodent and human brain have been reported, but co-expression of SV2 genes on a cellular level, their expressions in the human brain, comparison to radioligand binding, any possible regulation in epilepsy are not known. We have here analyzed the expression of SV2 genes in neuronal subtypes in the temporal neocortex in selected specimens by using single nucleus-RNA sequencing, and performed quantitative PCR in populations of temporal lobe epilepsy (TLE) patients and healthy controls. [3H]-UCB-J autoradiography was performed to analyze the correlation between the mRNA transcript and binding capacity to SV2A. Our data showed that the SV2A transcript is expressed in all glutamatergic and GABAergic cortical subtypes, while SV2B expression is restricted to only the glutamatergic neurons and SV2C has very limited expression in a small subgroup of GABAergic interneurons. The level of [3H]-UCB-J binding and the concentration of SV2A mRNA is strongly correlated in each patient, and the expression is lower in the TLE patients. There is no relationship between SV2A expression and age, sex, seizure frequency, duration of epilepsy, or whether patients were recently treated with levetiracetam or not. Collectively, these findings point out a neuronal subtype-specific distribution of the expression of the three SV2 genes, and the lower levels of both radioligand binding and expression further emphasize the significance of these proteins in this disease.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Neocórtex , Epilepsia/genética , Epilepsia del Lóbulo Temporal/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/genética , Vesículas Sinápticas/metabolismo
14.
Biol Psychiatry ; 91(8): 727-739, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838304

RESUMEN

BACKGROUND: A number of rare copy number variants (CNVs) have been linked to neurodevelopmental disorders. However, because CNVs encompass many genes, it is often difficult to identify the mechanisms that lead to developmental perturbations. METHODS: We used 15q13.3 microdeletion to propose and validate a novel strategy to predict the impact of CNV genes on brain development that could further guide functional studies. We analyzed single-cell transcriptomics datasets containing cortical interneurons to identify their developmental vulnerability to 15q13.3 microdeletion, which was validated in mouse models. RESULTS: We found that Klf13-but not other 15q13.3 genes-is expressed by precursors and neuroblasts in the medial and caudal ganglionic eminences during development, with a peak of expression at embryonic day (E)13.5 and E18.5, respectively. In contrast, in the adult mouse brain, Klf13 expression is negligible. Using Df(h15q13.3)/+ and Klf13+/- embryos, we observed a precursor subtype-specific impairment in proliferation in the medial ganglionic eminence and caudal ganglionic eminence at E13.5 and E17.5, respectively, corresponding to vulnerability predicted by Klf13 expression patterns. Finally, Klf13+/- mice showed a layer-specific decrease in parvalbumin and somatostatin cortical interneurons accompanied by changes in locomotor and anxiety-related behavior. CONCLUSIONS: We show that the impact of 15q13.3 microdeletion on precursor proliferation is grounded in a reduction in Klf13 expression. The lack of Klf13 in Df(h15q13.3)/+ cortex might be the major reason for perturbed density of cortical interneurons. Thus, the behavioral defects seen in 15q13.3 microdeletion could stem from a developmental perturbation owing to selective vulnerability of cortical interneurons during sensitive stages of their development.


Asunto(s)
Trastornos de los Cromosomas , Transcriptoma , Animales , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 15 , Discapacidad Intelectual , Interneuronas/metabolismo , Ratones , Convulsiones
15.
Nat Biotechnol ; 40(3): 345-354, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34650268

RESUMEN

Single-molecule spatial transcriptomics protocols based on in situ sequencing or multiplexed RNA fluorescent hybridization can reveal detailed tissue organization. However, distinguishing the boundaries of individual cells in such data is challenging and can hamper downstream analysis. Current methods generally approximate cells positions using nuclei stains. We describe a segmentation method, Baysor, that optimizes two-dimensional (2D) or three-dimensional (3D) cell boundaries considering joint likelihood of transcriptional composition and cell morphology. While Baysor can take into account segmentation based on co-stains, it can also perform segmentation based on the detected transcripts alone. To evaluate performance, we extend multiplexed error-robust fluorescence in situ hybridization (MERFISH) to incorporate immunostaining of cell boundaries. Using this and other benchmarks, we show that Baysor segmentation can, in some cases, nearly double the number of cells compared to existing tools while reducing segmentation artifacts. We demonstrate that Baysor performs well on data acquired using five different protocols, making it a useful general tool for analysis of imaging-based spatial transcriptomics.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica/métodos , Hibridación Fluorescente in Situ/métodos , ARN/análisis , Análisis de la Célula Individual/métodos , Transcriptoma/genética
16.
Cell Rep ; 37(8): 110050, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818537

RESUMEN

Germ cells have evolved unique mechanisms to ensure the transmission of genetically and nongenetically encoded information, whose alteration compromises germ cell immortality. Chromatin factors play fundamental roles in these mechanisms. H3K36 and H3K27 methyltransferases shape and propagate a pattern of histone methylation essential for C. elegans germ cell maintenance, but the role of respective histone demethylases remains unexplored. Here, we show that jmjd-5 regulates H3K36me2 and H3K27me3 levels, preserves germline immortality, and protects germ cell identity by controlling gene expression. The transcriptional and biological effects of jmjd-5 loss can be hindered by the removal of H3K27demethylases, indicating that H3K36/K27 demethylases act in a transcriptional framework and promote the balance between H3K36 and H3K27 methylation required for germ cell immortality. Furthermore, we find that in wild-type, but not in jmjd-5 mutants, alterations of H3K36 methylation and transcription occur at high temperature, suggesting a role for jmjd-5 in adaptation to environmental changes.


Asunto(s)
Células Germinativas/metabolismo , Histona Demetilasas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación
17.
Mol Psychiatry ; 26(10): 6083-6099, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34234281

RESUMEN

Familial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNß or IFNAR1, the receptor for IFNα/ß, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNß-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNß-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD. With meta-analysis of GWASs, we identified sequence variants in IFNß-IFNAR-related genes in sPD patients. Furthermore, sPDD patients expressed higher levels of PIAS2 mRNA and protein in neurons. To determine its function in brain, we overexpressed PIAS2 under a neuronal promoter, alone or with human α-synuclein, in the brains of mice, which caused motor and cognitive impairments and correlated with intraneuronal phosphorylated (p)α-synuclein accumulation and dopaminergic neuron loss. Ectopic expression of neuronal PIAS2 blocked mitophagy, increased the accumulation of senescent mitochondrial and oxidative stress, as evidenced by excessive oxDJ1 and 8OHdG, by inactivating ERK1/2-P53 signaling. Conversely, PIAS2 knockdown rescued the clinicopathological manifestations of PDD in Ifnb-/- mice on restoring mitochondrial homeostasis, oxidative stress, and pERK1/2-pP53 signaling. The regulation of JAK-STAT2-PIAS2 signaling was crucial for neurite outgrowth and neuronal survival and excitability and thus might prevent cognitive impairments. Our findings provide insights into the progression of sPD and dementia and have implications for new therapeutic approaches.


Asunto(s)
Demencia , Interferón beta/metabolismo , Enfermedad de Parkinson , Proteínas Inhibidoras de STAT Activados , Transducción de Señal , Animales , Demencia/genética , Neuronas Dopaminérgicas/metabolismo , Humanos , Ratones , Ratones Noqueados , Degeneración Nerviosa , Enfermedad de Parkinson/genética , Proteínas Inhibidoras de STAT Activados/genética , alfa-Sinucleína/metabolismo
18.
Front Neuroanat ; 15: 663667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025365

RESUMEN

The entorhinal cortex (EC) is the spatial processing center of the brain and structurally is an interface between the three layered paleocortex and six layered neocortex, known as the periarchicortex. Limited studies indicate peculiarities in the formation of the EC such as early emergence of cells in layers (L) II and late deposition of LIII, as well as divergence in the timing of maturation of cell types in the superficial layers. In this study, we examine developmental events in the entorhinal cortex using an understudied model in neuroanatomy and development, the pig and supplement the research with BrdU labeling in the developing mouse EC. We determine the pig serves as an excellent anatomical model for studying human neurogenesis, given its long gestational length, presence of a moderate sized outer subventricular zone and early cessation of neurogenesis during gestation. Immunohistochemistry identified prominent clusters of OLIG2+ oligoprogenitor-like cells in the superficial layers of the lateral EC (LEC) that are sparser in the medial EC (MEC). These are first detected in the subplate during the early second trimester. MRI analyses reveal an acceleration of EC growth at the end of the second trimester. BrdU labeling of the developing MEC, shows the deeper layers form first and prior to the superficial layers, but the LV/VI emerges in parallel and the LII/III emerges later, but also in parallel. We coin this lamination pattern parallel lamination. The early born Reln+ stellate cells in the superficial layers express the classic LV marker, Bcl11b (Ctip2) and arise from a common progenitor that forms the late deep layer LV neurons. In summary, we characterize the developing EC in a novel animal model and outline in detail the formation of the EC. We further provide insight into how the periarchicortex forms in the brain, which differs remarkably to the inside-out lamination of the neocortex.

19.
Prog Neurobiol ; 202: 102054, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33905709

RESUMEN

The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.


Asunto(s)
Trastornos del Neurodesarrollo , Neurogénesis , Animales , Axones , Encéfalo , Corteza Cerebral , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...