Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(4): 2152-2174, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633063

RESUMEN

Blood flow index (BFI) is an optically accessible parameter, with unit distance-squared-over-time, that is widely used as a proxy for tissue perfusion. BFI is defined as the dynamic scattering probability (i.e. the ratio of dynamic to overall reduced scattering coefficients) times an effective Brownian diffusion coefficient that describes red blood cell (RBC) motion. Here, using a wavelength division multiplexed, time-of-flight- (TOF) - resolved iNIRS system, we obtain TOF-resolved field autocorrelations at 773 nm and 855 nm via the same source and collector. We measure the human forearm, comprising biological tissues with mixed static and dynamic scattering, as well as a purely dynamic scattering phantom. Our primary finding is that forearm BFI increases from 773 nm to 855 nm, though the magnitude of this increase varies across subjects (23% ± 19% for N = 3). However, BFI is wavelength-independent in the purely dynamic scattering phantom. From these data, we infer that the wavelength-dependence of BFI arises from the wavelength-dependence of the dynamic scattering probability. This inference is further supported by RBC scattering literature. Our secondary finding is that the higher-order cumulant terms of the mean squared displacement (MSD) of RBCs are significant, but decrease with wavelength. Thus, laser speckle and related modalities should exercise caution when interpreting field autocorrelations.

2.
Opt Lett ; 47(1): 110-113, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951892

RESUMEN

In diffuse optics, quantitative assessment of the human brain is confounded by the skull and scalp. To better understand these superficial tissues, we advance interferometric near-infrared spectroscopy (iNIRS) to form images of the human superficial forehead blood flow index (BFI). We present a null source-collector (S-C) polarization splitting approach that enables galvanometer scanning and eliminates unwanted backscattered light. Images show an order-of-magnitude heterogeneity in superficial dynamics, implying an order-of-magnitude heterogeneity in brain specificity, depending on forehead location. Along the time-of-flight dimension, autocorrelation decay rates support a three-layer model with increasing BFI from the skull to the scalp to the brain. By accurately characterizing superficial tissues, this approach can help improve specificity for the human brain.


Asunto(s)
Interferometría , Espectroscopía Infrarroja Corta , Encéfalo/diagnóstico por imagen , Hemodinámica , Humanos , Cráneo
3.
Opt Lett ; 46(18): 4498-4501, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525031

RESUMEN

We present multi-exposure interferometric diffusing wave spectroscopy (MiDWS), which measures brain blood flow index (BFI) continuously and non-invasively. MiDWS employs interferometry to detect low light levels, probing the optical field autocorrelation indirectly by varying the sensor exposure time. Here MiDWS is compared with conventional interferometric diffusing wave spectroscopy and speckle contrast optical spectroscopy in phantoms. Notably, the MiDWS approach enables the use of low frame rate, two-dimensional complementary metal-oxide semiconductor cameras in a short exposure time regime, where detector noise greatly exceeds the sample photon count. Finally, we show that MiDWS can monitor the BFI simultaneously at two source-collector separations (1 and 3 cm) on the adult human head on a single camera, enabling the use of superficial signal regression techniques to improve brain specificity.


Asunto(s)
Interferometría , Fotones , Circulación Cerebrovascular , Humanos , Fantasmas de Imagen , Análisis Espectral
4.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33980479

RESUMEN

Cerebral blood flow (CBF) is essential for brain function, and CBF-related signals can inform us about brain activity. Yet currently, high-end medical instrumentation is needed to perform a CBF measurement in adult humans. Here, we describe functional interferometric diffusing wave spectroscopy (fiDWS), which introduces and collects near-infrared light via the scalp, using inexpensive detector arrays to rapidly monitor coherent light fluctuations that encode brain blood flow index (BFI), a surrogate for CBF. Compared to other functional optical approaches, fiDWS measures BFI faster and deeper while also providing continuous wave absorption signals. Achieving clear pulsatile BFI waveforms at source-collector separations of 3.5 cm, we confirm that optical BFI, not absorption, shows a graded hypercapnic response consistent with human cerebrovascular physiology, and that BFI has a better contrast-to-noise ratio than absorption during brain activation. By providing high-throughput measurements of optical BFI at low cost, fiDWS will expand access to CBF.

5.
Nat Commun ; 11(1): 391, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959896

RESUMEN

Red blood cells (RBCs) transport oxygen to tissues and remove carbon dioxide. Diffuse optical flowmetry (DOF) assesses deep tissue RBC dynamics by measuring coherent fluctuations of multiply scattered near-infrared light intensity. While classical DOF measurements empirically correlate with blood flow, they remain far-removed from light scattering physics and difficult to interpret in layered media. To advance DOF measurements closer to the physics, here we introduce an interferometric technique, surmounting challenges of bulk motion to apply it in awake humans. We reveal two measurement dimensions: optical phase, and time-of-flight (TOF), the latter with 22 picosecond resolution. With this multidimensional data, we directly confirm the unordered, or Brownian, nature of optically probed RBC dynamics typically assumed in classical DOF. We illustrate how incorrect absorption assumptions, anisotropic RBC scattering, and layered tissues may confound classical DOF. By comparison, our direct method enables accurate and comprehensive assessment of blood flow dynamics in humans.


Asunto(s)
Circulación Cerebrovascular/fisiología , Modelos Biológicos , Corteza Prefrontal/fisiología , Dispersión de Radiación , Animales , Emulsiones/administración & dosificación , Emulsiones/farmacocinética , Eritrocitos/fisiología , Emulsiones Grasas Intravenosas/administración & dosificación , Estudios de Factibilidad , Humanos , Inyecciones Intravenosas , Interferometría/instrumentación , Interferometría/métodos , Luz , Ratones , Método de Montecarlo , Fosfolípidos/administración & dosificación , Fosfolípidos/farmacocinética , Corteza Prefrontal/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Aceite de Soja/administración & dosificación , Aceite de Soja/farmacocinética
6.
Opt Lett ; 43(23): 5881-5884, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499965

RESUMEN

Quantifying light transport in turbid media is a long-standing challenge. This challenge arises from the difficulty in experimentally separating unscattered, ballistic light from forward scattered light. Correlation gating is a new approach that numerically separates light paths based on statistical dynamics of the optical field. Here we apply correlation gating with interferometric near-infrared spectroscopy (iNIRS) to separate and independently quantify ballistic and scattered light transmitted through thick samples. First, we present evidence that correlation gating improves the isolation of ballistic light in a thick, intrinsically dynamic medium with Brownian motion. Then, from a single set of iNIRS transmission measurements, we determine the ballistic attenuation coefficient and group refractive index from the time-of-flight (TOF) resolved static intensity, and we determine the reduced scattering and absorption coefficients from the diffusive part of the TOF resolved dynamic intensity. Finally, we show that correlation gating is applicable in intrinsically static media in which motion is induced externally. Thus, for the first time, to the best of our knowledge, the key optical properties of a turbid medium can be derived from a single set of transmission measurements.

7.
Optica ; 5(5): 518-527, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417035

RESUMEN

Light-scattering methods are widely used in soft matter physics and biomedical optics to probe dynamics in turbid media, such as diffusion in colloids or blood flow in biological tissue. These methods typically rely on fluctuations of coherent light intensity, and therefore cannot accommodate more than a few modes per detector. This limitation has hindered efforts to measure deep tissue blood flow with high speed, since weak diffuse light fluxes, together with low single-mode fiber throughput, result in low photon count rates. To solve this, we introduce multimode fiber (MMF) interferometry to the field of diffuse optics. In doing so, we transform a standard complementary metal-oxide-semiconductor (CMOS) camera into a sensitive detector array for weak light fluxes that probe deep in biological tissue. Specifically, we build a novel CMOS-based, multimode interferometric diffusing wave spectroscopy (iDWS) system and show that it can measure ∼20 speckles simultaneously near the shot noise limit, acting essentially as ∼20 independent photon-counting channels. We develop a matrix formalism, based on MMF mode field solutions and detector geometry, to predict both coherence and speckle number in iDWS. After validation in liquid phantoms, we demonstrate iDWS pulsatile blood flow measurements at 2.5 cm source-detector separation in the adult human brain in vivo. By achieving highly sensitive and parallel measurements of coherent light fluctuations with a CMOS camera, this work promises to enhance performance and reduce cost of diffuse optical instruments.

8.
Opt Lett ; 42(3): 591-594, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146535

RESUMEN

Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.


Asunto(s)
Absorción Fisicoquímica , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Circulación Cerebrovascular , Interferometría/métodos , Dispersión de Radiación , Espectroscopía Infrarroja Corta/métodos , Animales , Masculino , Ratones
9.
Opt Express ; 24(1): 329-54, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26832264

RESUMEN

We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality.


Asunto(s)
Interferometría/instrumentación , Rayos Láser , Nefelometría y Turbidimetría/instrumentación , Espectroscopía Infrarroja Corta/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
10.
Optica ; 3(12): 1471-1476, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30381798

RESUMEN

Sensing and imaging methods based on the dynamic scattering of coherent light (including laser speckle, laser Doppler, diffuse correlation spectroscopy, dynamic light scattering, and diffusing wave spectroscopy) quantify scatterer motion using light intensity fluctuations. The underlying optical field autocorrelation, rather than being measured directly, is typically inferred from the intensity autocorrelation through the Siegert relationship, assuming that the scattered field obeys Gaussian statistics. Here, we demonstrate interferometric near-infrared spectroscopy for measuring the time-of-flight (TOF) resolved field and intensity autocorrelations in turbid media. We find that the Siegert relationship breaks down for short TOFs due to static paths whose optical field does not decorrelate over experimental time scales. We also show that eliminating such paths by polarization gating restores the validity of the Siegert relationship. The unique capability of measuring optical field autocorrelations, as demonstrated here, enables the study of non-Gaussian and non-ergodic light scattering processes. Moreover, direct measurements of field autocorrelations are more efficient than indirect measurements based on intensity autocorrelations. Thus, optical field measurements may improve the quantiffcation of scatterer dynamics with coherent light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA