Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(20): 26685-26712, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722359

RESUMEN

The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.


Asunto(s)
Quitosano , Estructuras Metalorgánicas , Simulación de Dinámica Molecular , Nanoestructuras , Rosuvastatina Cálcica , Simvastatina , Contaminantes Químicos del Agua , Quitosano/química , Estructuras Metalorgánicas/química , Simvastatina/química , Rosuvastatina Cálcica/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Nanoestructuras/química , Oxidación-Reducción , Ácidos Ftálicos
2.
J Mater Chem B ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739040

RESUMEN

The advent of polymer-based dielectrics marked a significant breakthrough in dielectric materials. However, despite their many advantages, they pose serious environmental threats. Therefore, in recent years, there has been growing interest in bio-based polymers as a sustainable alternative to traditional petroleum-based polymers. Their renewable nature and reduced environmental impact can fulfil the rising demand for eco-friendly substitutes. Beyond their ecological benefits, bio-based polymers also possess distinctive electrical properties that make them extremely attractive in a variety of applications. Considering these, herein, we present recent advancements in bio-based dielectric polymers and nanocomposites. First, the fundamental concepts of dielectric and polymer-based dielectric materials are covered. Then, we will delve into the discussion of recent advancements in the dielectric properties and thermal stability of bio-based polymers, including polylactic acid, polyhydroxyalkanoates, polybutylene succinate, starch, cellulose, chitosan, chitins, and alginates, and their nanocomposites. Other novel bio-based dielectric polymers and their distinct dielectric characteristics have also been pointed out. In an additional section, the piezoelectric properties of these polymers and their recent biomedical applications have been highlighted and discussed thoroughly. In conclusion, this paper thoroughly discusses the recent advances in bio-based dielectric polymers and their potential to revolutionize the biomedical industry while cultivating a more sustainable and greener future.

3.
Biomed Mater ; 19(4)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38636500

RESUMEN

Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.


Asunto(s)
Huesos , Cerámica , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Humanos , Andamios del Tejido/química , Animales , Porosidad , Cerámica/química , Materiales Biocompatibles/química , Sustitutos de Huesos/química , Regeneración Ósea , Células Madre/citología , Metales/química
5.
J Biomater Sci Polym Ed ; 35(7): 1105-1153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38386362

RESUMEN

Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.


Regenerative medicine by utilizing tissue engineering and cell transplantation was shown to provide advancements in hearing and ear aesthetics to fit different patients' needs.Gaining the necessary knowledge and training on use of different scaffolds is essential for otology specialists and patients who search for hearing and ear aesthetics.It is crucial that patients are instructed for differences exist between various scaffolds for hearing and ear aesthetics.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Animales , Medicina Regenerativa/métodos , Materiales Biocompatibles/química
6.
ChemistryOpen ; 13(4): e202300176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38230849

RESUMEN

This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxido de Zinc/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química
7.
Chemosphere ; 350: 141010, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154677

RESUMEN

This study focuses on the utilization of connectionist models, specifically Independent Component Analysis (ICA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Genetic Algorithm-Particle Swarm Optimization (GAPSO) integrated with a least-squares support vector machine (LSSVM) to forecast the degradation of tetracycline (TC) through photocatalysis using Metal-Organic Frameworks (MOFs). The primary objective of this study was to evaluate the viability and precision of these connectionist models in estimating the efficiency of TC degradation, particularly within the context of wastewater treatment. The input parameters for these models cover essential MOF characteristics, such as pore size and surface area, along with critical operational factors, such as pH, TC concentration, catalyst dosage, and illumination duration, all of which are linked to the photocatalytic performance of MOFs. Sensitivity analysis revealed that the illumination duration is the primary influencer of TC photodegradation with MOF photocatalysts, while the MOFs' surface area is the second crucial parameter shaping the efficiency and dynamics of the TC-MOF photocatalytic system. The developed LSSVM models display impressive predictive capabilities, effectively forecasting the experimental degradation of TC with high accuracy. Among these models, the GAPSO-LSSVM model excels as the top performer, achieving notable evaluation metrics, including STD, RMSE, MSE, MRE, and R2 at values of 3.09, 3.42, 11.71, 5.95, and 0.986, respectively. In comparison, the PSO-LSSVM, ICA-LSSVM, and GA-LSSVM models yield mean relative errors of 6.18%, 7.57%, and 11.37%, respectively. These outcomes highlight the exceptional predictive capabilities of the GAPSO-LSSVM model, solidifying its position as the most accurate and dependable model for predicting TC photodegradation in this study. This study contributes to advancing photocatalytic research and effectively reinforces the importance of leveraging machine learning methodologies for tackling environmental challenges.


Asunto(s)
Compuestos Heterocíclicos , Estructuras Metalorgánicas , Purificación del Agua , Tetraciclina , Antibacterianos , Aprendizaje Automático
8.
Sci Rep ; 13(1): 22771, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123653

RESUMEN

In recent years, concerns about the presence of pharmaceutical compounds in wastewater have increased. Various types of residues of tetracycline family antibiotic compounds, which are widely used, are found in environmental waters in relatively low and persistent concentrations, adversely affecting human health and the environment. In this study, a resorcinol formaldehyde (RF) aerogel was prepared using the sol-gel method at resorcinol/catalyst ratio of 400 and resorcinol/water ratio of 2 and drying at ambient pressure for removing antibiotics like minocycline. Next, RF aerogel was modified with graphene and to increase the specific surface area and porosity of the modified sample and to form the graphene plates without compromising the interconnected porous three-dimensional structure of the aerogel. Also, the pores were designed according to the size of the minocycline particles on the meso- and macro-scale, which bestowed the modified sample the ability to remove a significant amount of the minocycline antibiotic from the aqueous solution. The removal percentage of the antibiotic obtained by UV-vis spectroscopy. Ultimately, the performance of prepared aerogels was investigated under various conditions, including adsorbent doses (4-10 mg), solution pHs (2-12), contact times of the adsorbent with the adsorbate (3-24 h), and initial concentration of antibiotic (40-100 mg/l). The results from the BET test demonstrated that the surface area of the resorcinol formaldehyde aerogel sample, which included 1 wt% graphene (RF-G1), exhibited an augmentation in comparison to the surface area of the pure aerogel. Additionally, it was noted that the removal percentage of minocycline antibiotic for both the unmodified and altered samples was 71.6% and 92.1% at the optimal pH values of 4 and 6, respectively. The adsorption capacity of pure and modified aerogel for the minocycline antibiotic was 358 and 460.5 mg/g, respectively. The adsorption data for the modified aerogel was studied by the pseudo-second-order model and the results obtained from the samples for antibiotic adsorption with this model revealed a favorable fit, which indicated that the chemical adsorption in the rapid adsorption of the antibiotic by the modified aerogel had occurred.


Asunto(s)
Antibacterianos , Grafito , Minociclina , Antibacterianos/aislamiento & purificación , Formaldehído , Grafito/química , Minociclina/aislamiento & purificación , Resorcinoles , Agua/química
9.
ChemistryOpen ; 12(6): e202200250, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37260410

RESUMEN

This work provides the synthetic route for the arrangement of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell nanoparticles (NPs) with cytotoxic capabilities. The production of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell NPs was facilitated utilizing S. persica bark extracts. The results of Powder X-ray Diffraction (PXRD), Ultraviolet-visible (UV-Vis) spectroscopy, Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray (EDX) analysis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) supported the green synthesis and characterization of Fe3 O4 @Ag and α-Fe2 O3 @Ag NPs. The particle size was measured by the TEM analysis to be about 30 and 50 nm, respectively; while the results of FESEM showed that α-Fe2 O3 @Ag and Fe3 O4 @Ag particles contained multifaceted particles with a size of 50-60 nm and 20-25 nm, respectively. The outcomes of VSM were indicative of a saturation magnetization of 37 and 0.18 emu/g at room temperature, respectively. The potential cytotoxicity of the synthesized core-shell nanoparticles towards breast cancer (MCF-7) and human umbilical vein endothelial (HUVEC) cells was evaluated by an MTT assay. α-Fe2 O3 @Ag NPs were able to destroy 100 % of MCF-7 cell at doses above 80 µg/mL, and it was confirmed that Fe3 O4 @Ag NPs at a volume of 160 µg/mL can destroy 90 % of MCF-7 cells. Thus, the applicability of the prepared nanoparticles of these nanoparticles in biological and medical fields has been demonstrated.


Asunto(s)
Antineoplásicos , Nanopartículas , Humanos , Difracción de Rayos X , Células MCF-7 , Fenómenos Magnéticos
10.
ACS Appl Mater Interfaces ; 15(26): 31185-31205, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37343042

RESUMEN

The effect of the COVID-19 pandemic on the accumulation of environmental pollutants has been significant. In that way, waste management systems have faced problems, and the amount of hazardous and medical wastes has increased. As pharmaceuticals associated with the treatment of COVID-19 enter the environment, aquatic and terrestrial ecosystems have been negatively impacted, potentially disrupting natural processes and harming aquatic life. This analysis seeks to appraise the potential of mixed matrix membranes (MMMs) composed of Pebax 1657-g-chitosan-polyvinylidene fluoride (PEX-g-CHS-PVDF)-bovine serum albumin (BSA)@ZIF-CO3-1 as adsorbents for removing remdesivir (REMD) and nirmatrelvir (NIRM) from aqueous environments. An in silico study was conducted to explore the adsorption characteristics, physicochemical properties, and structural features of these MMMs, employing quantum mechanical (QM) calculations, molecular dynamics (MD) simulations, and Monte Carlo (MC) simulations as research methodologies. Incorporating BSA@ZIF-CO3-1 into the PEX-g-CHS-PVDF polymer matrix improved the physicochemical properties of MMMs by promoting the compatibility and interfacial adhesion between the two materials, facilitated by electrostatic interactions, van der Waals forces, and hydrogen bonding. Investigation of the interaction mechanism between the title pharmaceutical pollutants and the surfaces of MMMs, along with the description of their adsorption behavior, was also conducted by applying MD and MC approaches. Our observations indicate that the adsorption behavior of REMD and NIRM is influenced by molecular size, shape, and the presence of functional groups. Molecular simulation analysis demonstrated that the MMM membrane is a highly suitable adsorbent for the adsorption of REMD and NIRM drugs, with a higher affinity toward REMD adsorption. Our study emphasizes the significance of computational modeling in developing practical strategies for eliminating COVID-19 drug contaminants from wastewater. The knowledge obtained through our molecular simulations and QM calculations can assist in creating more efficient adsorption materials, resulting in a cleaner and healthier environment.


Asunto(s)
COVID-19 , Quitosano , Humanos , Albúmina Sérica Bovina/química , Antivirales/uso terapéutico , Adsorción , Tratamiento Farmacológico de COVID-19 , Ecosistema , Pandemias
11.
ACS Appl Mater Interfaces ; 15(18): 22445-22470, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115756

RESUMEN

Super-tough poly(lactic acid)/polycarbonate (PLA/PC) (50/50) blends with an excellent balance of stiffness, toughness, and thermal stability were systematically designed and characterized. Poly(methyl methacrylate) (PMMA) was utilized as a novel, highly effective nonreactive interphase to promote PLA-PC phase compatibility. Partial miscibility of PMMA with both PLA and PC produced strong molecular entanglements across the PLA-PC phase boundary followed by an excellent phase adhesion. This was predicted from interfacial energy measurements and supported by dynamic mechanical thermal analysis, morphological observations, and mechanical tests. Ternary PLA/PC/PMMA blends exhibited an exceptional set of stiffness, tensile and flexural strength, tensile and flexural ductility, and thermal stability together with improved impact strength compared with neat PLA and uncompatibilized PLA/PC blends. Addition of nonreactive polybutadiene-g-styrene-co-acrylonitrile (PB-g-SAN) impact modifier to the compatibilized blend resulted in further dramatic improvements in the dispersion state of PC and PMMA phase domains followed by the development of an interconnected structure of PC, PMMA, and PB-g-SAN domains in the PLA matrix. Such a network-like morphology, with rubbery particles percolated at the interface between the dispersed structures and surrounding PLA matrix, produced a tremendous increase in impact resistance (≈700 J/m) and tensile ductility (≈200% strain) while maintaining excellent stiffness (≥2.1 GPa). The combined effects of interfacial localization of impact modifier particles, network-like morphology (extended over the entire volume of the blend), and strong phase interactions between the components (due to mutual miscibility) are described to be responsible for super-tough behavior. The role of PMMA as an efficient interphase adhesion promoter in the toughened quaternary blends is also clarified. Impact fractography revealed multiple void formations, plastic growth of microvoids, and the formation of void-fibrillar structures around as well as inside the dispersed structures as the main micromechanical deformation processes responsible for massive shear yielding and plastic deformation of blends. Blends designed in this work offer remarkable improvements in tensile and flexural ductility, impact resistance, and heat deflection temperature compared with neat PLA resin. The overall characteristics of these blend systems are comparable and/or superior to those of several commercial thermoplastic resins.

12.
Talanta ; 258: 124399, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870153

RESUMEN

According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Nanotubos de Carbono , Neoplasias , Grafito/química , Nanotubos de Carbono/química , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Neoplasias/diagnóstico
14.
Int J Biol Macromol ; 233: 123517, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739050

RESUMEN

In this work, a lignocellulosic filler, rice straw (RS), was thermoplasticized by acetylation modification process and compounded with plasticized poly(lactic acid) (PLA) through twin-screw extrusion process. The biocomposite films were prepared continuously by using a slit die for PLA/RS and PLA/acetylated RS (ARS) compounds. By the chemical reaction, thermoset microstructure of RS was changed to a more flexible one. Additionally, by the reaction, the interfacial adhesion of lignocellulosic filler/PLA matrix, filler hydrophobicity and PLA wettability was enhanced considerably. The miscibility of partially phase-separated PLA/poly(ethylene glycol) (PEG) mixtures was improved by adding RS-based microfillers, particularly by the acetylated RS. Compared with PLA/unmodified RS films, PLA/ARS biocomposites show better thermal stability, toughness, Young modulus and softening point, especially at certain filler loadings.


Asunto(s)
Poliésteres , Polietilenglicoles , Poliésteres/química , Polietilenglicoles/química , Humectabilidad
15.
J Biomed Mater Res A ; 111(8): 1243-1252, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36808867

RESUMEN

One of the most important parts of the body is the peripheral nervous system, and any injuries in this system may result in potentially lethal consequences or severe side effects. The peripheral nervous system may not rehabilitate the harmed regions following disabling disorders, which reduce the quality of life of patients. Fortunately, in recent years, hydrogels have been proposed as exogenous alternatives to bridge damaged nerve stumps to create a useful microenvironment for advancing nerve recovery. However, hydrogel-based medicine in the therapy of peripheral nerve injury still needs a lot of improvement. In this study, GelMA/PEtOx hydrogel was used for the first time to deliver 4-Aminopyridine (4-AP) small molecules. 4-AP is a broad-spectrum potassium channel blocker, which has been demonstrated to increase neuromuscular function in patients with various demyelinating disorders. The prepared hydrogel showed a porosity of 92.2 ± 2.6% after 20 min, swelling ratio of 456.01 ± 2.0% after 180 min, weight loss of 81.7 ± 3.1% after 2 weeks, and good blood compatibility as well as sustainable drug release. MTT analysis was performed to assess the cell viability of the hydrogel and proved that the hydrogel is an appropriate substrate for the survival of cells. In vivo studies were performed for functional analysis and the sciatic functional index (SFI) as well as hot plate latency results showed that the use of GelMA/PEtOx+4-AP hydrogel enhances the regeneration compared to the GelMA/PEtOx hydrogel and the control group.


Asunto(s)
Gelatina , Traumatismos de los Nervios Periféricos , Ratas , Masculino , Animales , Gelatina/química , Hidrogeles/farmacología , Hidrogeles/química , Metacrilatos/química , 4-Aminopiridina/farmacología , Calidad de Vida , Nervio Ciático/fisiología , Regeneración Nerviosa
16.
Sci Rep ; 13(1): 3214, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828906

RESUMEN

In this work, a cost-effective, environmentally friendly, and convenient method for synthesizing a novel heterogeneous catalyst via modification of polystyrene using tetrazole-copper magnetic complex [Ps@Tet-Cu(II)@Fe3O4] has been successfully developed. The synthesized complex was analyzed using TEM (transmission electron microscopy), HRTEM (high resolution-transmission electron microscopy), STEM (scanning transmission electron microscopy), FFT (Fast Fourier transform), XRD (X-ray diffraction), FT-IR (Fourier transform-infrared spectroscopy), TG/DTG (Thermogravimetry and differential thermogravimetry), ICP-OES (Inductively coupled plasma-optical emission spectrometry), Vibrating sample magnetometer (VSM), EDS (energy dispersive X-ray spectroscopy), and elemental mapping. N-Sulfonyl-N-aryl tetrazoles were synthesized in high yields from N-sulfonyl-N-aryl cyanamides and sodium azide using Ps@Tet-Cu(II)@Fe3O4 nanocatalyst. The Ps@Tet-Cu(II)@Fe3O4 complex can be recycled and reused easily multiple times using an external magnet without significant loss of catalytic activity.

17.
Prog Biomater ; 12(2): 75-86, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36652161

RESUMEN

Hydrogels have been increasingly applied in tissue regeneration and drug delivery systems (DDS). In this study, the capacity of valproic acid (Val) encapsulated within hybrid of alginate (Alg)-chitosan (Cs) (Alg-Cs) hydrogel containing Cs nanoparticle (Npch) with/without human endometrial stem cells (hEnSC) was initially examined for regeneration of spinal cord injury (SCI). To evaluate the stability of the synthesized hydrogels zeta potential necessary measurements were made. Physicochemically, the developed hydrogels were evaluated using Fourier-transform infrared (FTIR) spectroscopy. The physical properties including degradation rate, swelling ability, and tunability of the synthesized hydrogels were studied. To evaluate the nerve regeneration ability of the synthesized hydrogels, 35 Sprague-Dawley rats were undergone SCI. The spinal cords were exposed using laminectomy in T9-T10 area and the hemi-section SCI model was made. The rats were then randomly divided into 5 groups (n = 7) including, Alg-Cs/Npch, Alg-Cs/Npch/hEnSCs, Alg-Cs/Npch/Val, and Alg-Cs/Npch/hEnScs/Val, and the control groups without any intervention. The FTIR spectra showed band frequencies and assignments of Val, Alg-Cs, and alginate. Nanoparticles were formulated with a mean diameter of 187 and 210 nm, for Val/Alg-Cs and Alg-Cs, respectively. The loading of Val into Alg-Cs led to its reduced size by about 40 nm. The Cs-Npch/Val hydrogels degraded faster than the Alg-Cs-/Npch/Val hydrogel specifically in extended time of incubation. A higher swelling capacity of Alg-Cs/Npch hydrogel, compared to Cs/Npch/Val and Alg-Cs/Npch/Val hydrogels, was found. The Cs-Npch/Val hydrogels degraded faster than Alg-Cs-/Npch/Val hydrogel. The Alg-Cs/Npch/hEnSCs/Val could regenerate the damaged nerve fibers and histologically prevent the SCI-induced vacuolization spaces. The prepared Alg-Cs/Npch/Val could be a suitable polymeric carrier for taurine drugs as bioactive substrate in nerve tissue engineering (NTE) and DDS.

18.
J Mater Chem B ; 11(2): 452-470, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36530136

RESUMEN

As a glycerol-based polyester, poly(glycerol azelaic acid) (PGAz) has shown great potential for biomedical applications, such as tissue engineering. However, it tends to show low mechanical strength and a relatively fast biodegradation rate, limiting its capability of mimicking and supporting a broad range of hard tissues such as bone. Moreover, the typical thermal curing process of poly(glycerol-co-diacids) is one of their drawbacks. To overcome these limitations, glycidyl methacrylate (GMA) moieties were first grafted on the backbone of PGAz herein to achieve a UV-curable PGAz-g-GMA (PGAG) resin. Then polyvinylidene fluoride (PVDF), nano-hydroxyapatite, and Cloisite Na+ nanoclay were used to fabricate photo-crosslinked PGAG/PVDF nanocomposites with efficient properties to mimic various hard tissues. Our results demonstrated that all nanocomposites possessed a semi-crystalline structure with noticeable PVDF ß-phase fraction. The scaffolds yielded Young's modulus, ultimate tensile strength, and elongation at break of 15-24 MPa, 13-15 MPa, and 50-65%, respectively that could meet the requirements for supporting cancellous bone tissue. The presence of nanofillers improved the hydrophilicity and slightly accelerated the biodegradation rate of the scaffolds. Additionally, it was illustrated that the scaffolds had no noticeable in vitro cytotoxicity, and mouse fibroblast L929 cells and osteoblast MG-63 cells attached to and proliferated on their surface desirably. Our findings indicate that the PGAG/PVDF blend and its nanocomposites could be high-potential candidates for a range of hard tissues, specifically cancellous bones.


Asunto(s)
Nanocompuestos , Ingeniería de Tejidos , Ratones , Animales , Ingeniería de Tejidos/métodos , Glicerol/química , Nanocompuestos/química
19.
J Biomater Sci Polym Ed ; 34(1): 108-146, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924585

RESUMEN

Four-dimensional (4 D) printing is a novel emerging technology, which can be defined as the ability of 3 D printed materials to change their form and functions. The term 'time' is added to 3 D printing as the fourth dimension, in which materials can respond to a stimulus after finishing the manufacturing process. 4 D printing provides more versatility in terms of size, shape, and structure after printing the construct. Complex material programmability, multi-material printing, and precise structure design are the essential requirements of 4 D printing systems. The utilization of stimuli-responsive polymers has increasingly taken the place of cell traction force-dependent methods and manual folding, offering a more advanced technique to affect a construct's adjusted shape transformation. The present review highlights the concept of 4 D printing and the responsive bioinks used in 4 D printing, such as water-responsive, pH-responsive, thermo-responsive, and light-responsive materials used in tissue regeneration. Cell traction force methods are described as well. Finally, this paper aims to introduce the limitations and future trends of 4 D printing in biomedical applications based on selected key references from the last decade.


Asunto(s)
Bioimpresión , Medicina Regenerativa , Medicina Regenerativa/métodos , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
20.
J Biomater Sci Polym Ed ; 33(6): 801-822, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983332

RESUMEN

Peripheral nerve injury can significantly affect the daily life of individuals with impaired nerve function and permanent nerve deformity. One of the most common treatments is autograft transplantation. Tissue engineering is one of the efficient methods to regenerate injured nerves using scaffolds, cells, and growth factors. Conduits, which are produced by a variety of techniques, could be used as an alternative treatment for patients with damaged nerves. The electrospinning technique is one of the most important and widely used methods for generating nanofiber conduits from biocompatible polymers. In this study, using the electrospinning method, three different conduits, including polyurethane (PU), polyurethane/collagen (PU/C), and a new conduit based on polyurethane + collagen + nanobioglass (PU/C/NBG), were prepared. The characteristics of these three types of conduits were evaluated by SEM, XRD, and various experiments, including porosity, degradation, contact angle, DMTA, FTIR, MTT, and DAPI staining. The results of MTT and DAPI assays revealed the safety of conduits and proper cell attachment. Overall, the results obtained from various experiments showed that the novel PU/C/NBG conduit has better mechanical properties in terms of porosity, hydrophilicity, and biocompatibility in comparison with PU and PU/C conduits and could be a suitable candidate for peripheral nerve regeneration and axonal growth due to its repair potential.


Asunto(s)
Poliuretanos , Ingeniería de Tejidos , Colágeno , Humanos , Regeneración Nerviosa , Nervios Periféricos , Nervio Ciático , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...