Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 11(16): 3635-3649, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37017673

RESUMEN

Theranostic inorganic-organic hybrid nanoparticles (IOH-NPs) with a cocktail of chemotherapeutic and cytostatic drugs and a composition Gd23+[(PMX)0.5(EMP)0.5]32-, [Gd(OH)]2+[(PMX)0.74(AlPCS4)0.13]2-, or [Gd(OH)]2+[(PMX)0.70(TPPS4)0.15]2- (PMX: pemetrexed, EMP: estramustine phosphate, AlPCS4: aluminum(III) chlorido phthalocyanine tetrasulfonate, TPPS4: tetraphenylporphine sulfonate) are presented for the first time. These IOH-NPs are prepared in water (40-60 nm in size) and have a non-complex composition with outstanding drug loading (71-82% of total nanoparticle mass) of at least two chemotherapeutic or a mixture of cytostatic and photosensitizing agents. All IOH-NPs show red to deep-red emission (650-800 nm) to enable optical imaging. The superior performance of the IOH-NPs with a chemotherapeutic/cytostatic cocktail is validated based on cell-viability assays and angiogenesis studies with human umbilical vein endothelial cells (HUVEC). The synergistic anti-cancer effect of the IOH-NPs with a chemotherapeutic cocktail is shown in a murine breast-cancer cell line (pH8N8) and a human pancreatic cancer cell line (AsPC1), whereas the synergistic cytotoxic and phototoxic efficacy is verified in response to illumination of HeLa-GFP cancer cells, MTT assays with human colon cancer cells (HCT116), and normal human dermal fibroblasts (NHDF). HepG2 spheroids as 3D cell cultures prove the effective uptake of the IOH-NPs with high uniform distribution and the release of the chemotherapeutic drugs with the strong synergistic effect of the cocktail of drugs.


Asunto(s)
Antineoplásicos , Citostáticos , Nanopartículas , Animales , Humanos , Ratones , Citostáticos/farmacología , Medicina de Precisión , Células Endoteliales , Antineoplásicos/farmacología
2.
ACS Biomater Sci Eng ; 8(4): 1596-1603, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35344659

RESUMEN

[ZrO]2+[(FCN)0.4(OH)0.8]2- and Gd3+[FCN]3- inorganic-organic hybrid nanoparticles (IOH-NPs) are novel saline antiviral nanocarriers with foscarnet (FCN) as a drug anion. FCN as a pyrophosphate analogue serves as a prototype of a viral DNA polymerase inhibitor. FCN is used for the treatment of herpesvirus infections, including the drug-resistant cytomegalovirus (CMV) and herpes simplex viruses, HSV-1 and HSV-2. The novel [ZrO]2+[(FCN)0.4(OH)0.8]2- and Gd3+[FCN]3- IOH-NPs are characterized by aqueous synthesis, small size (20-30 nm), low material complexity, high biocompatibility, and high drug load (up to 44 wt % FCN per nanoparticle). The antiviral activity of the FCN-type IOH-NPs is probed for the human cytomegalovirus (HCMV). Moreover, the uptake of FCN-type IOH-NPs into vesicles, cytoplasm, and nuclei of nonphagocytic lung epithelial cells is evaluated. As a result, a promising antiviral activity of the FCN-type IOH-NPs that significantly outperforms freely dissolved FCN at the level of clinical formulations is observed, encouraging a future use of FCN-type IOH-NPs for the delivery of antivirals against respiratory viruses.


Asunto(s)
Herpesvirus Humano 1 , Nanopartículas , Antivirales/farmacología , Citomegalovirus/genética , Foscarnet/farmacología , Herpesvirus Humano 1/genética , Humanos , Nanopartículas/uso terapéutico
3.
J Control Release ; 319: 360-370, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31923534

RESUMEN

We previously reported that inorganic-organic hybrid nanoparticles (IOH-NPs) containing the synthetic glucocorticoid (GC) betamethasone show efficient anti-inflammatory activity in mice. Here, we employed IOH-NPs with the chemical composition Gd3+2[AMP]2-3 (AMP: adenosine monophosphate) to determine their in vivo distribution by magnetic resonance imaging after intraperitoneal injection. We show that IOH-NPs distribute throughout the peritoneal cavity from where they get rapidly cleared and then localize to abdominal organs. Our findings were confirmed by analyzing individual mouse organs ex vivo following injection of IOH-NPs with the chemical composition [ZrO]2+[(BMP)0.9(FMN)0.1]2- (BMP: betamethasone phosphate, FMN: flavin mononucleotide) or [ZrO]2+[(HPO4)0.9(FMN)0.1]2- using inductively coupled plasma mass spectrometry and flow cytometry. To characterize the mechanism of cellular uptake in vitro, we tested different cell lines for their ability to engulf IOH-NPs by flow cytometric analysis taking advantage of the incorporated fluorescent dye FMN. We found that IOH-NPs were efficiently taken up by macrophages, to a lesser extent by fibroblasts, epithelial cells, and myoblasts, and hardly at all by both T and B lymphocytes. Characterization of the endocytic pathway further suggested that IOH-NPs were internalized by macropinocytosis, and imaging flow cytometry revealed a strong colocalization of the engulfed IOH-NPs with the lysosomal compartment. Intracellular release of the functional anions from IOH-NPs was confirmed by the ability of the GC betamethasone to downregulate the expression of surface receptors on bone marrow-derived macrophages. Taken together, our findings unveil the mechanistic basis of an anti-inflammatory GC therapy with IOH-NPs, which may entail translational approaches in the future.


Asunto(s)
Glucocorticoides , Nanopartículas , Animales , Antiinflamatorios , Colorantes Fluorescentes , Macrófagos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...