Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 105(12): 4879-4897, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34110474

RESUMEN

Strains of the yeast genus Blastobotrys (subphylum Saccharomycotina) represent a valuable biotechnological resource for basic biochemistry research, single-cell protein, and heterologous protein production processes. Species of this genus are dimorphic, non-pathogenic, thermotolerant, and can assimilate a variety of hydrophilic and hydrophobic substrates. These can constitute a single-cell oil platform in an emerging bio-based economy as oleaginous traits have been discovered recently. However, the regulatory network of lipogenesis in these yeasts is poorly understood. To keep pace with the growing market demands for lipid-derived products, it is critical to understand the lipid biosynthesis in these unconventional yeasts to pinpoint what governs the preferential channelling of carbon flux into lipids instead of the competing pathways. This review summarizes information relevant to the regulation of lipid metabolic pathways and prospects of metabolic engineering in Blastobotrys yeasts for their application in food, feed, and beyond, particularly for fatty acid-based fuels and oleochemicals. KEY POINTS: • The production of biolipids by heterotrophic yeasts is reviewed. • Summary of information concerning lipid metabolism regulation is highlighted. • Special focus on the importance of diacylglycerol acyltransferases encoding genes in improving lipid production is made.


Asunto(s)
Biocombustibles , Levaduras , Biotecnología , Lípidos , Ingeniería Metabólica , Redes y Vías Metabólicas , Levaduras/genética
2.
J Basic Microbiol ; 57(4): 345-352, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28155998

RESUMEN

This study analyzes the single cell oil (SCO), fatty acid profile, and biodiesel fuel properties of the yeast Rhodotorula mucilaginosa IIPL32 grown on the pentose fraction of acid pre-treated sugarcane bagasse as a carbon source. The yeast biomass from nitrogen limiting culture conditions (15.3 g L-1 ) was able to give the SCO yield of 0.17 g g-1 of xylose consumed. Acid digestion, cryo-pulverization, direct in situ transesterification, and microwave assisted techniques were evaluated in comparison to the Soxhlet extraction for the total intracellular yeast lipid recovery. The significant differences were observed among the SCO yield of different methods and the in situ transesterification stood out most for effective yeast lipid recovery generating 97.23 mg lipid as FAME per gram dry biomass. The method was fast and consumed lesser solvent with greater FAME yield while accessing most cellular fatty acids present. The yeast lipids showed the major presence of monounsaturated fatty esters (35-55%; 18:1, 16:1) suitable for better ignition quality, oxidative stability, and cold-flow properties of the biodiesel. Analyzed fuel properties (density, kinematic viscosity, cetane number) of the yeast oil were in good agreement with international biodiesel standards. The sugarcane bagasse-derived xylose and the consolidated comparative assessment of lab scale SCO recovery methods highlight the necessity for careful substrate choice and validation of analytical method in yeast oil research. The use of less toxic co-solvents together with solvent recovery and recycling would help improve process economics for sustainable production of biodiesel from the hemicellulosic fraction of cheap renewable sources.


Asunto(s)
Biocombustibles/análisis , Lípidos/análisis , Lípidos/química , Rhodotorula/química , Rhodotorula/metabolismo , Biocombustibles/economía , Biomasa , Celulosa/metabolismo , Esterificación , Ácidos Grasos/análisis , Lípidos/aislamiento & purificación , Solventes/química , Xilosa/metabolismo
3.
Bioresour Technol ; 197: 502-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26362462

RESUMEN

This study reports optimization of the transesterification reaction step on dried biomass of an oleaginous fungus Aspergillus candidus grown on agro-dairy waste, whey. Acid catalyzed transesterification was performed and variables affecting esterification, viz., catalyst methanol and chloroform concentrations, temperature, time, and biomass were investigated. Statistical optimization of the transesterification reaction using Plackett-Burman Design showed biomass to be the predominant factor with a 12.5-fold increase in total FAME from 25.6 to 320mg. Studies indicate that the transesterification efficiency in terms of conversion is favored by employing lower biomass loadings. A. candidus exhibited FAME profiles containing desirable saturated (30.2%), monounsaturated (31.5%) and polyunsaturated methyl esters (38.3%). The predicted and experimentally determined biodiesel properties (density, kinematic viscosity, iodine value, cetane number, TAN, water content, total and free glycerol) were in accordance with international (ASTM D6751, EN 14214) and national (IS 15607) standards.


Asunto(s)
Aspergillus/química , Biocombustibles , Biotecnología/métodos , Suero Lácteo , Biomasa , Catálisis , Cloroformo/química , Esterificación , Ésteres/química , Ácidos Grasos/química , Residuos Industriales , Metanol/química , Micelio/química , Temperatura
4.
J Microbiol Biotechnol ; 25(4): 459-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25341469

RESUMEN

This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.


Asunto(s)
Biocombustibles , Biotransformación , Hongos/metabolismo , Aceites de Plantas/metabolismo , Aspergillus/metabolismo , Aceite de Coco , Ácidos Grasos/metabolismo
5.
Bioresour Technol ; 135: 246-53, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23260270

RESUMEN

This work evaluates sugarcane bagasse (SCB) conversion, in a biorefinery approach, to coproduce biodiesel and high value products using two novel mangrove fungi. On acid pre-treatment, sugarcane bagasse hydrolysate (SCBH) resulted in a xylitol yield of 0.51 g/g xylose consumed in 72 h by Williopsis saturnus. After SCB pretreatment, sugarcane bagasse residue (SCBR) was utilized using Aspergillus terreus for production of xylanase (12.74 U/ml) and cell biomass (9.8 g/L) which was extracted for single cell oil (SCO; 0.19 g/g) and transesterified to biodiesel. The FAME profile exhibited long chain SFAs and PUFAs with predicted biodiesel properties lying within the range specified by international standards. This biorefining approach of SCB utilization for co-production of xylitol, xylanase and SCO gains importance in terms of sustainability and eco-friendliness.


Asunto(s)
Biocombustibles/microbiología , Biotecnología/métodos , Celulosa/química , Endo-1,4-beta Xilanasas/biosíntesis , Hongos/metabolismo , Aceites/metabolismo , Xilitol/biosíntesis , Aspergillus/metabolismo , Avicennia/microbiología , Técnicas de Cultivo Celular por Lotes , Celulasa/metabolismo , Ésteres/metabolismo , Ácidos Grasos/metabolismo , Hongos/enzimología , Hidrólisis , Saccharum/química , Factores de Tiempo , Clima Tropical , Humedales
6.
AMB Express ; 2(1): 36, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22812483

RESUMEN

Single cell oils (SCOs) accumulated by oleaginous yeasts have emerged as potential alternative feedstocks for biodiesel production. As lipid accumulation is species and substrate specific, selection of an appropriate strain is critical. Five strains of Y. lipolytica, a known model oleaginous yeast, were investigated to explore their potential for biodiesel production when grown on glucose and inexpensive wastes. All the strains were found to accumulate > 20% (w/w) of their dry cell mass as lipids with neutral lipid as the major fraction when grown on glucose and on wastes such as waste cooking oil (WCO), waste motor oil (WMO). However, amongst them, Y. lipolytica NCIM 3589, a tropical marine yeast, exhibited a maximal lipid/biomass coefficient, YL/X on 30 g L-1 glucose (0.29 g g-1) and on 100 g L-1 WCO (0.43 g g-1) with a high content of saturated and monounsaturated fatty acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties of strain 3589 when grown on glucose and WCO, such as density (0.81 and 1.04 g cm-3), viscosity (4.44 and 3.6 mm2 s-1), SN (190.81 and 256), IV (65.7 and 37.8) and CN (56.6 and 50.8) are reported for the first time for Y. lipolytica and correlate well with specified standards. Thus, the SCO of oleaginous tropical marine yeast Y. lipolytica NCIM 3589 could be used as a potential feedstock for biodiesel production.

7.
Microb Cell Fact ; 11: 71, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22646719

RESUMEN

BACKGROUND: Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. RESULTS: In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1. The strain was able to utilize cheap renewable substrates viz., sugarcane bagasse, grape stalk, groundnut shells and cheese whey for SCO production. CONCLUSION: Our study suggests that SCOs of oleaginous fungi from the mangrove wetlands of the Indian west coast could be used as a potential feedstock for biodiesel production with Aspergillus terreus IBB M1 as a promising candidate.


Asunto(s)
Biocombustibles/análisis , Hongos/metabolismo , Lípidos/biosíntesis , Agua de Mar/microbiología , Ácidos Grasos/metabolismo , Fermentación , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Glucosa/metabolismo , Humedales
8.
Bioconjug Chem ; 13(4): 699-706, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12121123

RESUMEN

Single color cyanine dye-labeled (Cy 5.0 and Cy 5.5) dideoxynucleoside-5'-triphosphates, or 'terminators', containing different spacer lengths were synthesized and evaluated for efficacy in DNA sequencing methods using a modified thermally stable DNA polymerase. The single color cyanine dye terminators were formulated into two separate sets of sequencing mixes, one for Cy 5.0 and the other for Cy 5.5, and evaluated on different automated sequencing platforms. Each set of mixes included two pyrimidine terminators with 17-atom linkers and two purine terminators with 10-atom linkers between the dye and the nucleotide. The two sets of cyanine dye-labeled terminators chosen for this cycle sequencing study produced improved band patterns with band uniformity similar to that obtained with dye-primer sequencing methods.


Asunto(s)
Carbocianinas , Sondas de ADN/síntesis química , Didesoxinucleósidos , Colorantes Fluorescentes , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Carbocianinas/química , ADN Polimerasa Dirigida por ADN , Desoxirribonucleótidos/química , Didesoxinucleósidos/química , Colorantes Fluorescentes/química , Tamización de Portadores Genéticos , Humanos , Indicadores y Reactivos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA