Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38868940

RESUMEN

BACKGROUND: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

2.
J Biomed Mater Res A ; 111(11): 1768-1780, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37465994

RESUMEN

In-stent restenosis and thrombosis remain to be long-term challenges in coronary stenting procedures. The objective of this study was to evaluate the in vitro biological responses of trimethylsilane (TMS) plasma nanocoatings modified with NH3 /O2 (2:1 molar ratio) plasma post-treatment (TMS + NH3 /O2 nanocoatings) on cobalt chromium (CoCr) alloy L605 coupons, L605 stents, and 316L stainless steel (SS) stents. Surface properties of the plasma nanocoatings with up to 2-year aging time were characterized by wettability assessment and x-ray photoelectron spectroscopy (XPS). It was found that TMS + NH3 /O2 nanocoatings had a surface composition of 41.21 ± 1.06 at% oxygen, 31.90 ± 1.08 at% silicon, and 24.12 ± 1.7 at% carbon, and very small but essential amount of 2.77 ± 0.18 at% nitrogen. Surface chemical stability of the plasma coatings was noted with persistent O/Si atomic ratio of 1.292-1.413 and N/Si atomic ratio of ~0.087 through 2 years. The in vitro biological responses of plasma nanocoatings were studied by evaluating the cell proliferation and migration of porcine coronary artery endothelial cells (PCAECs) and smooth muscle cells (PCASMCs). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay results revealed that, after 7-day incubation, TMS + NH3 /O2 nanocoatings maintained a similar level of PCAEC proliferation while showing a decrease in the viability of PCASMCs by 73 ± 19% as compared with uncoated L605 surfaces. Cell co-culture of PCAECs and PCASMCs results showed that, the cell ratio of PCAEC/PCASMC on TMS + NH3 /O2 nanocoating surfaces was 1.5-fold higher than that on uncoated L605 surfaces, indicating enhanced selectivity for promoting PCAEC growth. Migration test showed comparable PCAEC migration distance for uncoated L605 and TMS + NH3 /O2 nanocoatings. In contrast, PCASMC migration distance was reduced nearly 8.5-fold on TMS + NH3 /O2 nanocoating surfaces as compared to the uncoated L605 surfaces. Platelet adhesion test using porcine whole blood showed lower adhered platelets distribution (by 70 ± 16%), reduced clotting attachment (by 54 ± 12%), and less platelet activation on TMS + NH3 /O2 nanocoating surfaces as compared with the uncoated L605 controls. It was further found that, under shear stress conditions of simulated blood flow, TMS + NH3 /O2 nanocoating significantly inhibited platelet adhesion compared to the uncoated 316L SS stents and TMS nanocoated 316L SS stents. These results indicate that TMS + NH3 /O2 nanocoatings are very promising in preventing both restenosis and thrombosis for coronary stent applications.


Asunto(s)
Células Endoteliales , Trombosis , Animales , Porcinos , Stents , Plaquetas/metabolismo , Coagulación Sanguínea , Aleaciones de Cromo , Trombosis/prevención & control
5.
Mo Med ; 118(3): 219-225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149081

RESUMEN

Consumption of oily fish high in omega-3 fatty acids (n-3FAs) is strongly associated with reduced risk of adverse cardiovascular events. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the n-3FAs in fish oil believed to confer its beneficial effects. Over the past two decades, multiple clinical trials have been conducted to test the hypothesis that encapsulated EPA and DHA supplements improve cardiovascular outcomes in patients with established cardiovascular disease or at risk of developing it. Over the same time period, over-the-counter fish oil supplements have become a multi-billion-dollar industry. In this article, we briefly review available clinical trial data involving EPA and DHA supplementation. Based on currently available information, we conclude that combination capsules containing EPA and DHA should not be used to reduce cardiovascular risk. Some studies suggest that EPA as stand-alone therapy decreases cardiovascular risk. Nevertheless, we advocate a restrictive approach to using EPA to improve cardiovascular outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Ácidos Docosahexaenoicos/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Aceites de Pescado/uso terapéutico , Humanos
6.
Arterioscler Thromb Vasc Biol ; 40(6): 1479-1490, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268785

RESUMEN

OBJECTIVE: Enhanced expression of PAI-1 (plasminogen activator inhibitor-1) has been implicated in atherosclerosis formation in humans with obesity and metabolic syndrome. However, little is known about the effects of pharmacological targeting of PAI-1 on atherogenesis. This study examined the effects of pharmacological PAI-1 inhibition on atherosclerosis formation in a murine model of obesity and metabolic syndrome. Approach and Results: LDL receptor-deficient (ldlr-/-) mice were fed a Western diet high in cholesterol, fat, and sucrose to induce obesity, metabolic dysfunction, and atherosclerosis. Western diet triggered significant upregulation of PAI-1 expression compared with normal diet controls. Addition of a pharmacological PAI-1 inhibitor (either PAI-039 or MDI-2268) to Western diet significantly inhibited obesity and atherosclerosis formation for up to 24 weeks without attenuating food consumption. Pharmacological PAI-1 inhibition significantly decreased macrophage accumulation and cell senescence in atherosclerotic plaques. Recombinant PAI-1 stimulated smooth muscle cell senescence, whereas a PAI-1 mutant defective in LRP1 (LDL receptor-related protein 1) binding did not. The prosenescent effect of PAI-1 was blocked by PAI-039 and R2629, a specific anti-LRP1 antibody. PAI-039 significantly decreased visceral adipose tissue inflammation, hyperglycemia, and hepatic triglyceride content without altering plasma lipid profiles. CONCLUSIONS: Pharmacological targeting of PAI-1 inhibits atherosclerosis in mice with obesity and metabolic syndrome, while inhibiting macrophage accumulation and cell senescence in atherosclerotic plaques, as well as obesity-associated metabolic dysfunction. PAI-1 induces senescence of smooth muscle cells in an LRP1-dependent manner. These results help to define the role of PAI-1 in atherosclerosis formation and suggest a new plasma-lipid-independent strategy for inhibiting atherogenesis.


Asunto(s)
Aterosclerosis/prevención & control , Síndrome Metabólico/tratamiento farmacológico , Inhibidor 1 de Activador Plasminogénico/efectos de los fármacos , Animales , Senescencia Celular/efectos de los fármacos , Dieta Occidental , Modelos Animales de Enfermedad , Ácidos Indolacéticos/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/patología , Síndrome Metabólico/patología , Síndrome Metabólico/prevención & control , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/prevención & control , Placa Aterosclerótica/patología , Inhibidor 1 de Activador Plasminogénico/fisiología , Receptores de LDL/deficiencia , Receptores de LDL/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...