Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6698): eadi5199, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781369

RESUMEN

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.


Asunto(s)
Redes Reguladoras de Genes , Genómica , Sitios de Carácter Cuantitativo , Análisis de la Célula Individual , Humanos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Cromatina/metabolismo , Cromatina/genética , Comunicación Celular/genética , Encéfalo/metabolismo , Envejecimiento/genética , Trastornos Mentales/genética
2.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38562822

RESUMEN

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.

3.
bioRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961577

RESUMEN

Transcription factor (TF) coordination plays a key role in gene regulation such as protein-protein interactions (PPIs) and DNA co-bindings. Single-cell technologies facilitate gene expression measurement for individual cells and cell-type identification, yet the connection between TF coordination and gene regulation of various cell types remains unclear. To address this, we have developed a novel computational approach, Network Regression Embedding (NetREm), to reveal cell-type TF-TF coordination activities for gene regulation. NetREm leverages network-constrained regularization using prior interaction knowledge (e.g., protein, chromatin, TF binding) to analyze single-cell gene expression data. We test NetREm by simulation data and apply it to analyze various cell types in both central and peripheral nerve systems (PNS) such as neuronal, glial and Schwann cells as well as in Alzheimer's disease (AD). Our findings uncover cell-type coordinating TFs and identify new TF-target gene candidate links. We also validate our top predictions using Cut&Run and knockout loss-of-function expression data in rat and mouse models and compare our results with additional functional genomic data including expression quantitative trait loci (eQTL) and Genome-Wide Association Studies (GWAS) to link genetic variants to TF coordination. NetREm is open-source available at https://github.com/SaniyaKhullar/NetREm .

4.
Genome Med ; 15(1): 88, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904203

RESUMEN

BACKGROUND: Genotypes are strongly associated with disease phenotypes, particularly in brain disorders. However, the molecular and cellular mechanisms behind this association remain elusive. With emerging multimodal data for these mechanisms, machine learning methods can be applied for phenotype prediction at different scales, but due to the black-box nature of machine learning, integrating these modalities and interpreting biological mechanisms can be challenging. Additionally, the partial availability of these multimodal data presents a challenge in developing these predictive models. METHOD: To address these challenges, we developed DeepGAMI, an interpretable neural network model to improve genotype-phenotype prediction from multimodal data. DeepGAMI leverages functional genomic information, such as eQTLs and gene regulation, to guide neural network connections. Additionally, it includes an auxiliary learning layer for cross-modal imputation allowing the imputation of latent features of missing modalities and thus predicting phenotypes from a single modality. Finally, DeepGAMI uses integrated gradient to prioritize multimodal features for various phenotypes. RESULTS: We applied DeepGAMI to several multimodal datasets including genotype and bulk and cell-type gene expression data in brain diseases, and gene expression and electrophysiology data of mouse neuronal cells. Using cross-validation and independent validation, DeepGAMI outperformed existing methods for classifying disease types, and cellular and clinical phenotypes, even using single modalities (e.g., AUC score of 0.79 for Schizophrenia and 0.73 for cognitive impairment in Alzheimer's disease). CONCLUSION: We demonstrated that DeepGAMI improves phenotype prediction and prioritizes phenotypic features and networks in multiple multimodal datasets in complex brains and brain diseases. Also, it prioritized disease-associated variants, genes, and regulatory networks linked to different phenotypes, providing novel insights into the interpretation of gene regulatory mechanisms. DeepGAMI is open-source and available for general use.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Automático , Animales , Ratones , Redes Neurales de la Computación , Genotipo , Fenotipo , Enfermedad de Alzheimer/genética
5.
Neuron ; 111(24): 3988-4005.e11, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37820724

RESUMEN

Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Enfermedades Mitocondriales , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Trastorno del Espectro Autista/metabolismo , Neuronas/metabolismo , Neurogénesis , Enfermedades Mitocondriales/metabolismo , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción/metabolismo
6.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292613

RESUMEN

Injury to adult mammalian central nervous system (CNS) axons results in limited regeneration. Rodent studies have revealed a developmental switch in CNS axon regenerative ability, yet whether this is conserved in humans is unknown. Using human fibroblasts from 8 gestational-weeks to 72 years-old, we performed direct reprogramming to transdifferentiate fibroblasts into induced neurons (Fib-iNs), avoiding pluripotency which restores cells to an embryonic state. We found that early gestational Fib-iNs grew longer neurites than all other ages, mirroring the developmental switch in regenerative ability in rodents. RNA-sequencing and screening revealed ARID1A as a developmentally-regulated modifier of neurite growth in human neurons. These data suggest that age-specific epigenetic changes may drive the intrinsic loss of neurite growth ability in human CNS neurons during development. One-Sentence Summary: Directly-reprogrammed human neurons demonstrate a developmental decrease in neurite growth ability.

7.
Cell Rep Methods ; 3(2): 100409, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36936070

RESUMEN

Our machine-learning framework, brain and organoid manifold alignment (BOMA), first performs a global alignment of developmental gene expression data between brains and organoids. It then applies manifold learning to locally refine the alignment, revealing conserved and specific developmental trajectories across brains and organoids. Using BOMA, we found that human cortical organoids better align with certain brain cortical regions than with other non-cortical regions, implying organoid-preserved developmental gene expression programs specific to brain regions. Additionally, our alignment of non-human primate and human brains reveals highly conserved gene expression around birth. Also, we integrated and analyzed developmental single-cell RNA sequencing (scRNA-seq) data of human brains and organoids, showing conserved and specific cell trajectories and clusters. Further identification of expressed genes of such clusters and enrichment analyses reveal brain- or organoid-specific developmental functions and pathways. Finally, we experimentally validated important specific expressed genes through the use of immunofluorescence. BOMA is open-source available as a web tool for community use.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Animales , Organoides/metabolismo
8.
Hum Mol Genet ; 32(11): 1797-1813, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36648426

RESUMEN

Neuroinflammation and immune dysregulation play a key role in Alzheimer's disease (AD) and are also associated with severe Covid-19 and neurological symptoms. Also, genome-wide association studies found many risk single nucleotide polymorphisms (SNPs) for AD and Covid-19. However, our understanding of underlying gene regulatory mechanisms from risk SNPs to AD, Covid-19 and phenotypes is still limited. To this end, we performed an integrative multi-omics analysis to predict gene regulatory networks for major brain regions from population data in AD. Our networks linked transcription factors (TFs) to TF binding sites (TFBSs) on regulatory elements to target genes. Comparative network analyses revealed cross-region-conserved and region-specific regulatory networks, in which many immunological genes are present. Furthermore, we identified a list of AD-Covid genes using our networks involving known and Covid-19 genes. Our machine learning analysis prioritized 36 AD-Covid candidate genes for predicting Covid severity. Our independent validation analyses found that these genes outperform known genes for classifying Covid-19 severity and AD. Finally, we mapped genome-wide association study SNPs of AD and severe Covid that interrupt TFBSs on our regulatory networks, revealing potential mechanistic insights of those disease risk variants. Our analyses and results are open-source available, providing an AD-Covid functional genomic resource at the brain region level.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Multiómica , COVID-19/genética , Encéfalo/metabolismo , Fenotipo
9.
Genome Med ; 14(1): 133, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424644

RESUMEN

BACKGROUND: Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of providing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships between variants and expression changes in distant genes. METHODS: By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes. RESULTS: We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target genes (i.e., "trans-eGenes"). We found that many variants associated with these candidate trans-eQTLs overlap with known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL's target gene acts as a mediator for the trans-eQTL SNP's effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL's target is a transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization between candidate trans-eQTLs and schizophrenia GWAS loci). CONCLUSIONS: We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica , Corteza Prefrontal
10.
PLoS Comput Biol ; 18(7): e1010287, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35849618

RESUMEN

Dysregulation of gene expression in Alzheimer's disease (AD) remains elusive, especially at the cell type level. Gene regulatory network, a key molecular mechanism linking transcription factors (TFs) and regulatory elements to govern gene expression, can change across cell types in the human brain and thus serve as a model for studying gene dysregulation in AD. However, AD-induced regulatory changes across brain cell types remains uncharted. To address this, we integrated single-cell multi-omics datasets to predict the gene regulatory networks of four major cell types, excitatory and inhibitory neurons, microglia and oligodendrocytes, in control and AD brains. Importantly, we analyzed and compared the structural and topological features of networks across cell types and examined changes in AD. Our analysis shows that hub TFs are largely common across cell types and AD-related changes are relatively more prominent in some cell types (e.g., microglia). The regulatory logics of enriched network motifs (e.g., feed-forward loops) further uncover cell type-specific TF-TF cooperativities in gene regulation. The cell type networks are also highly modular and several network modules with cell-type-specific expression changes in AD pathology are enriched with AD-risk genes. The further disease-module-drug association analysis suggests cell-type candidate drugs and their potential target genes. Finally, our network-based machine learning analysis systematically prioritized cell type risk genes likely involved in AD. Our strategy is validated using an independent dataset which showed that top ranked genes can predict clinical phenotypes (e.g., cognitive impairment) of AD with reasonable accuracy. Overall, this single-cell network biology analysis provides a comprehensive map linking genes, regulatory networks, cell types and drug targets and reveals cell-type gene dysregulation in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Biología , Reposicionamiento de Medicamentos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Fenotipo
11.
J Neurodev Disord ; 14(1): 28, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501679

RESUMEN

Intellectual and Developmental Disabilities (IDDs), such as Down syndrome, Fragile X syndrome, Rett syndrome, and autism spectrum disorder, usually manifest at birth or early childhood. IDDs are characterized by significant impairment in intellectual and adaptive functioning, and both genetic and environmental factors underpin IDD biology. Molecular and genetic stratification of IDDs remain challenging mainly due to overlapping factors and comorbidity. Advances in high throughput sequencing, imaging, and tools to record behavioral data at scale have greatly enhanced our understanding of the molecular, cellular, structural, and environmental basis of some IDDs. Fueled by the "big data" revolution, artificial intelligence (AI) and machine learning (ML) technologies have brought a whole new paradigm shift in computational biology. Evidently, the ML-driven approach to clinical diagnoses has the potential to augment classical methods that use symptoms and external observations, hoping to push the personalized treatment plan forward. Therefore, integrative analyses and applications of ML technology have a direct bearing on discoveries in IDDs. The application of ML to IDDs can potentially improve screening and early diagnosis, advance our understanding of the complexity of comorbidity, and accelerate the identification of biomarkers for clinical research and drug development. For more than five decades, the IDDRC network has supported a nexus of investigators at centers across the USA, all striving to understand the interplay between various factors underlying IDDs. In this review, we introduced fast-increasing multi-modal data types, highlighted example studies that employed ML technologies to illuminate factors and biological mechanisms underlying IDDs, as well as recent advances in ML technologies and their applications to IDDs and other neurological diseases. We discussed various molecular, clinical, and environmental data collection modes, including genetic, imaging, phenotypical, and behavioral data types, along with multiple repositories that store and share such data. Furthermore, we outlined some fundamental concepts of machine learning algorithms and presented our opinion on specific gaps that will need to be filled to accomplish, for example, reliable implementation of ML-based diagnosis technology in IDD clinics. We anticipate that this review will guide researchers to formulate AI and ML-based approaches to investigate IDDs and related conditions.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Inteligencia Artificial , Trastorno del Espectro Autista/diagnóstico , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico , Humanos , Recién Nacido , Discapacidad Intelectual/diagnóstico , Aprendizaje Automático
12.
bioRxiv ; 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34189529

RESUMEN

BACKGROUND: Genome-wide association studies have found many genetic risk variants associated with Alzheimer's disease (AD). However, how these risk variants affect deeper phenotypes such as disease progression and immune response remains elusive. Also, our understanding of cellular and molecular mechanisms from disease risk variants to various phenotypes is still limited. To address these problems, we performed an integrative multi-omics analysis of genotype, transcriptomics, and epigenomics for revealing gene regulatory mechanisms from disease variants to AD phenotypes. METHOD: First, given the population gene expression data of a cohort, we construct and cluster its gene co-expression network to identify gene co-expression modules for various AD phenotypes. Next, we predict transcription factors (TFs) regulating co-expressed genes and AD risk SNPs that interrupt TF binding sites on regulatory elements. Finally, we construct a gene regulatory network (GRN) linking SNPs, interrupted TFs, and regulatory elements to target genes and gene modules for each phenotype in the cohort. This network thus provides systematic insights into gene regulatory mechanisms from risk variants to AD phenotypes. RESULTS: Our analysis predicted GRNs in three major AD-relevant regions: Hippocampus, Dorsolateral Prefrontal Cortex (DLPFC), Lateral Temporal Lobe (LTL). Comparative analyses revealed cross-region-conserved and region-specific GRNs, in which many immunological genes are present. For instance, SNPs rs13404184 and rs61068452 disrupt SPI1 binding and regulation of AD gene INPP5D in the Hippocampus and LTL. However, SNP rs117863556 interrupts bindings of REST to regulate GAB2 in DLPFC only. Driven by emerging neuroinflammation in AD, we used Covid-19 as a proxy to identify possible regulatory mechanisms for neuroimmunology in AD. To this end, we looked at the GRN subnetworks relating to genes from shared AD-Covid pathways. From those subnetworks, our machine learning analysis prioritized the AD-Covid genes for predicting Covid-19 severity. Decision Curve Analysis also validated our AD-Covid genes outperform known Covid-19 genes for classifying severe Covid-19 patients. This suggests AD-Covid genes along with linked SNPs can be potential novel biomarkers for neuroimmunology in AD. Finally, our results are open-source available as a comprehensive functional genomic map for AD, providing a deeper mechanistic understanding of the interplay among multi-omics, brain regions, gene functions like neuroimmunology, and phenotypes.

13.
PLoS Biol ; 19(6): e3001265, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34143766

RESUMEN

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Proteínas Virales/inmunología , Anticuerpos Antivirales/sangre , COVID-19/patología , Coronavirus/inmunología , Reacciones Cruzadas , Epítopos de Linfocito B , Humanos , Epítopos Inmunodominantes , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Proteoma/inmunología , Índice de Severidad de la Enfermedad
14.
bioRxiv ; 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33052349

RESUMEN

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which one epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the six other known human CoVs. We also confirm reactivity against four of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to nine SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...