Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 1014462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439133

RESUMEN

Asthma is airway inflammatory diseases caused by the activation of group 2 innate lymphoid cells (ILC2s) and type 2 helper T (TH2) cells. Cysteine proteases allergen cause tissue damage to airway epithelial cells and activate ILC2-mediated type 2 airway inflammation. FK506 is an immunosuppressive agent against calcium-dependent NFAT activation that is also effective against asthmatic inflammation. However, the effects of FK506 on cysteine protease allergen-mediated airway inflammation remain unclear. In this study, we investigated the suppressive effects of FK506 on airway inflammation. FK506 had a partial inhibitory effect on ILC2-dependent eosinophil inflammation and a robust inhibitory effect on T cell-dependent eosinophil inflammation in a cysteine protease-induced mouse asthma model. The infiltration of T1/ST2+ CD4 T cells in the lungs contributed to the persistence of eosinophil infiltration in the airway; FK506 completely inhibited the infiltration of T1/ST2+ CD4 T cells. In the initial phase, FK506 treatment targeted lung ILC2 activation induced by leukotriene B4 (LTB4)-mediated calcium signaling, but not IL-33 signaling. FK506 also inhibited the IL-13-dependent accumulation of T1/ST2+ CD4 T cells in the lungs of the later responses. These results indicated that FK506 potently suppressed airway inflammation by targeting ILC2 activation and T1/ST2+ CD4 T cell accumulation.


Asunto(s)
Asma , Proteasas de Cisteína , Eosinofilia , Neumonía , Ratones , Animales , Inmunidad Innata , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Proteína 1 Similar al Receptor de Interleucina-1 , Linfocitos , Asma/tratamiento farmacológico , Neumonía/tratamiento farmacológico , Alérgenos , Inflamación/tratamiento farmacológico
2.
Front Immunol ; 12: 663177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867936

RESUMEN

Dominant-negative mutations associated with signal transducer and activator of transcription 3 (STAT3) signaling, which controls epithelial proliferation in various tissues, lead to atopic dermatitis in hyper IgE syndrome. This dermatitis is thought to be attributed to defects in STAT3 signaling in type 17 helper T cell specification. However, the role of STAT3 signaling in skin epithelial cells remains unclear. We found that STAT3 signaling in keratinocytes is required to maintain skin homeostasis by negatively controlling the expression of hair follicle-specific keratin genes. These expression patterns correlated with the onset of dermatitis, which was observed in specific pathogen-free conditions but not in germ-free conditions, suggesting the involvement of Toll-like receptor-mediated inflammatory responses. Thus, our study suggests that STAT3-dependent gene expression in keratinocytes plays a critical role in maintaining the homeostasis of skin, which is constantly exposed to microorganisms.


Asunto(s)
Folículo Piloso/fisiología , Factor de Transcripción STAT3/fisiología , Animales , Dermatitis Atópica/etiología , Dermatitis Atópica/genética , Dermatitis Atópica/inmunología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Folículo Piloso/inmunología , Homeostasis , Humanos , Queratinocitos/inmunología , Queratinocitos/fisiología , Queratinas/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT3/deficiencia , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal , Piel/inmunología , Piel/microbiología , Fenómenos Fisiológicos de la Piel , Células Th17/inmunología
3.
Sci Rep ; 11(1): 18511, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531471

RESUMEN

Cancer cells acquire drug resistance through the following stages: nonresistant, pre-resistant, and resistant. Although the molecular mechanism of drug resistance is well investigated, the process of drug resistance acquisition remains largely unknown. Here we elucidate the molecular mechanisms underlying the process of drug resistance acquisition by sequential analysis of gene expression patterns in tamoxifen-treated breast cancer cells. Single-cell RNA-sequencing indicates that tamoxifen-resistant cells can be subgrouped into two, one showing altered gene expression related to metabolic regulation and another showing high expression levels of adhesion-related molecules and histone-modifying enzymes. Pseudotime analysis showed a cell transition trajectory to the two resistant subgroups that stem from a shared pre-resistant state. An ordinary differential equation model based on the trajectory fitted well with the experimental results of cell growth. Based on the established model, it was predicted and experimentally validated that inhibition of transition to both resistant subtypes would prevent the appearance of tamoxifen resistance.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Modelos Teóricos , Tamoxifeno/uso terapéutico , Antineoplásicos Hormonales/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Tamoxifeno/administración & dosificación
4.
Life Sci Alliance ; 3(2)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32041892

RESUMEN

CRK and CRKL (CRK-like) encode adapter proteins with similar biochemical properties. Here, we show that a 50% reduction of the family-combined dosage generates developmental defects, including aspects of DiGeorge/del22q11 syndrome in mice. Like the mouse homologs of two 22q11.21 genes CRKL and TBX1, Crk and Tbx1 also genetically interact, thus suggesting that pathways shared by the three genes participate in organogenesis affected in the syndrome. We also show that Crk and Crkl are required during mesoderm development, and Crk/Crkl deficiency results in small cell size and abnormal mesenchyme behavior in primary embryonic fibroblasts. Our systems-wide analyses reveal impaired glycolysis, associated with low Hif1a protein levels as well as reduced histone H3K27 acetylation in several key glycolysis genes. Furthermore, Crk/Crkl deficiency sensitizes MEFs to 2-deoxy-D-glucose, a competitive inhibitor of glycolysis, to induce cell blebbing. Activated Rapgef1, a Crk/Crkl-downstream effector, rescues several aspects of the cell phenotype, including proliferation, cell size, focal adhesions, and phosphorylation of p70 S6k1 and ribosomal protein S6. Our investigations demonstrate that Crk/Crkl-shared pathways orchestrate metabolic homeostasis and cell behavior through widespread epigenetic controls.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Síndrome de DiGeorge/metabolismo , Homeostasis/genética , Proteínas Proto-Oncogénicas c-crk/metabolismo , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular/genética , Tamaño de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Glucosa/metabolismo , Glucólisis/genética , Masculino , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/genética , Proteínas Proto-Oncogénicas c-crk/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Transfección
5.
Sci Rep ; 6: 34349, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27686861

RESUMEN

CRK and CRKL adapter proteins play essential roles in development and cancer through their SRC homology 2 and 3 (SH2 and SH3) domains. To gain insight into the origin of their shared functions, we have investigated their evolutionary history. We propose a term, crk/crkl ancestral (crka), for orthologs in invertebrates before the divergence of CRK and CRKL in the vertebrate ancestor. We have isolated two orthologs expressed in the choanoflagellate Monosiga brevicollis, a unicellular relative to the metazoans. Consistent with its highly-conserved three-dimensional structure, the SH2 domain of M. brevicollis crka1 can bind to the mammalian CRK/CRKL SH2 binding consensus phospho-YxxP, and to the SRC substrate/focal adhesion protein BCAR1 (p130CAS) in the presence of activated SRC. These results demonstrate an ancient origin of the CRK/CRKL SH2-target recognition specificity. Although BCAR1 orthologs exist only in metazoans as identified by an N-terminal SH3 domain, YxxP motifs, and a C-terminal FAT-like domain, some pre-metazoan transmembrane proteins include several YxxP repeats in their cytosolic region, suggesting that they are remotely related to the BCAR1 substrate domain. Since the tyrosine kinase SRC also has a pre-metazoan origin, co-option of BCAR1-related sequences may have rewired the crka-dependent network to mediate adhesion signals in the metazoan ancestor.

6.
Science ; 344(6185): 760-4, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24833394

RESUMEN

A switchlike response in nuclear factor-κB (NF-κB) activity implies the existence of a threshold in the NF-κB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-κB (IκB) kinase-ß (IKKß) module is a switch mechanism for NF-κB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKß to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKß target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-κB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Guanilato Ciclasa/metabolismo , Quinasa I-kappa B/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , FN-kappa B/agonistas , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Línea Celular , Pollos , Retroalimentación Fisiológica , Guanilato Ciclasa/genética , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Noqueados , Mutación , Fosforilación , Receptores de Antígenos de Linfocitos B/genética , Serina/genética , Serina/metabolismo , Transducción de Señal
7.
Mech Dev ; 126(8-9): 611-23, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19549568

RESUMEN

The micromeres of sea urchin embryos have two functions: to promote the autonomous differentiation of skeletogenic cells and to induce endomesodermal tissues. Micromere specification is controlled by a double-repression gate consisting of two repressors, Pmar1 and HesC. Micro1/pmar1 encodes a transcriptional repressor with a paired-type N-terminal homeodomain and two C-terminal serine-rich repeats, each of which includes a sequence similar to engrailed homology region 1, which interacts with the co-repressor Groucho. To understand the molecular mechanisms of the double-repression gate, we examined the correlation between the structure and function of micro1. Phenotypic and gene expression pattern analyses of embryos injected with mutated micro1 mRNA revealed that micro1 consists of five functional domain and motifs; namely, a DNA-binding homeodomain, a nuclear localization signal in the C-terminal flanking region of the homeodomain, and two eh1-like motifs plus a short C-terminal stretch that together mediate transcriptional repression. Our data suggest that micro1 represses target genes, including hesC, via two redundant means: its eh1-like and C-terminal motifs. The C-terminal motif requires unidentified sequences for micro1 function; a micro1 mutant with the motif but lacking the unidentified sequences failed to trigger the double-repression gate for early micromere regulatory genes, except for delta, though it did repress hesC. Our results suggest that the spatial regulation of primary mesenchyme cell specification genes, including tbr, alx1, and ets1, may be different from that of delta.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Erizos de Mar/embriología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Dimerización , Perfilación de la Expresión Génica , Genes Reguladores , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Fenotipo , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido
8.
Nucleic Acids Res ; 36(4): 1343-57, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18187511

RESUMEN

Saccharomyces cerevisiae HMO1, a high mobility group B (HMGB) protein, associates with the rRNA locus and with the promoters of many ribosomal protein genes (RPGs). Here, the Sos recruitment system was used to show that HMO1 interacts with TBP and the N-terminal domain (TAND) of TAF1, which are integral components of TFIID. Biochemical studies revealed that HMO1 copurifies with TFIID and directly interacts with TBP but not with TAND. Deletion of HMO1 (Deltahmo1) causes a severe cold-sensitive growth defect and decreases transcription of some TAND-dependent genes. Deltahmo1 also affects TFIID occupancy at some RPG promoters in a promoter-specific manner. Interestingly, over-expression of HMO1 delays colony formation of taf1 mutants lacking TAND (taf1DeltaTAND), but not of the wild-type strain, indicating a functional link between HMO1 and TAND. Furthermore, Deltahmo1 exhibits synthetic growth defects in some spt15 (TBP) and toa1 (TFIIA) mutants while it rescues growth defects of some sua7 (TFIIB) mutants. Importantly, Deltahmo1 causes an upstream shift in transcriptional start sites of RPS5, RPS16A, RPL23B, RPL27B and RPL32, but not of RPS31, RPL10, TEF2 and ADH1, indicating that HMO1 may participate in start site selection of a subset of class II genes presumably via its interaction with TFIID.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Sitio de Iniciación de la Transcripción , Proteínas del Grupo de Alta Movilidad/genética , Mutación , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Transcripción Genética
9.
Mol Cell Biol ; 27(19): 6686-705, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17646381

RESUMEN

HMO1 is a high-mobility group B protein that plays a role in transcription of genes encoding rRNA and ribosomal proteins (RPGs) in Saccharomyces cerevisiae. This study uses genome-wide chromatin immunoprecipitation to study the roles of HMO1, FHL1, and RAP1 in transcription of these genes as well as other RNA polymerase II-transcribed genes in yeast. The results show that HMO1 associates with the 35S rRNA gene in an RNA polymerase I-dependent manner and that RPG promoters (138 in total) can be classified into several distinct groups based on HMO1 abundance at the promoter and the HMO1 dependence of FHL1 and/or RAP1 binding to the promoter. FHL1, a key regulator of RPGs, binds to most of the HMO1-enriched and transcriptionally HMO1-dependent RPG promoters in an HMO1-dependent manner, whereas it binds to HMO1-limited RPG promoters in an HMO1-independent manner, irrespective of whether they are transcribed in an HMO1-dependent manner. Reporter gene assays indicate that these functional properties are determined by the promoter sequence.


Asunto(s)
Proteínas de Unión al ADN , Regulación Fúngica de la Expresión Génica , ARN Ribosómico/metabolismo , Proteínas Ribosómicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead , Genoma Fúngico , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Biol Chem ; 282(30): 22228-38, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17553784

RESUMEN

General transcription factor TFIID is comprised of TATA-binding protein (TBP) and TBP-associated factors (TAFs), together playing critical roles in regulation of transcription initiation. The TAF N-terminal domain (TAND) of yeast TAF1 containing two subdomains, TAND1 (residues 10-37) and TAND2 (residues 46-71), is sufficient to interact with TBP and suppress the TATA binding activity of TBP. However, the detailed structural analysis of the complex between yeast TBP and TAND12 (residues 6-71) was hindered by its poor solubility and stability in solution. Here we report a molecular engineering approach where the N terminus of TBP is fused to the C terminus of TAND12 via linkers of various lengths containing (GGGS)(n) sequence, (n = 1, 2, 3). The length of the linker within the TAND12-TBP fusion has a significant effect on solubility and stability (SAS). The construct with (GGGS)(3) linker produces the best quality single-quantum-coherence (HSQC) NMR spectrum with markedly improved SAS. In parallel to these observations, the TAND12-TBP fusion exhibits marked reduction of TBP function in binding to TAF1 as well as temperature sensitivity in in vivo yeast cell growth. Remarkably, the temperature sensitivity was proportional to the length of the linker in the fusions: the construct with (GGGS)(3) linker did not grow at 20 degrees C, while those with (GGGS)(1) and (GGGS)(2) linkers did. These results together indicate that the native interaction between TBP and TAND12 is well maintained in the TAND12-(GGGS)(3)-TBP fusion and that this fusion approach provides an excellent model system to investigate the structural detail of the TBP-TAF1 interaction.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/antagonistas & inhibidores , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/genética , Termodinámica , Factor de Transcripción TFIID/antagonistas & inhibidores
11.
Biotechniques ; 42(2): 209-15, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17373486

RESUMEN

Gene expression reporter systems, in which a promoter of interest is cloned upstream of a readily assayed reporter gene, have been developed and used extensively to study gene expression in prokaryotes and eukaryotes. Unfortunately, most of these systems cannot be used to assay gene expression in nonsuperficial tissues in living organisms. This study examines a novel reporter gene system based on the gene encoding Escherichia coli polyphosphate kinase (PPK), which can be used to monitor gene expression in mammalian cells. PPK catalyzes the synthesis of inorganic polyphosphate (polyP) from ATP, and because mammalian cells do not contain detectable levels of polyP, PPK activity can be measured in mammalian cells using 31P-magnetic resonance spectroscopy or 31P-magnetic resonance imaging. The ppk reporter gene system described here is noninvasive, does not require an exogenous substrate, and can potentially be used in internal tissues of living organisms.


Asunto(s)
Escherichia coli/enzimología , Expresión Génica , Genes Reporteros , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Animales , Northern Blotting , Línea Celular , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Nucleic Acids Res ; 34(6): e51, 2006 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-16598072

RESUMEN

In unicellular and multicellular eukaryotes, elaborate gene regulatory mechanisms facilitate a broad range of biological processes from cell division to morphological differentiation. In order to fully understand the gene regulatory networks involved in these biological processes, the spatial and temporal patterns of expression of many thousands of genes will need to be determined in real time in living organisms. Currently available techniques are not sufficient to achieve this goal; however, novel methods based on magnetic resonance (MR) imaging may be particularly useful for sensitive detection of gene expression in opaque tissues. This report describes a novel reporter gene system that monitors gene expression dynamically and quantitatively, in yeast cells, by measuring the accumulation of inorganic polyphosphate (polyP) using MR spectroscopy (MRS) or MR spectroscopic imaging (MRI). Because this system is completely non-invasive and does not require exogenous substrates, it is a powerful tool for studying gene expression in multicellular organisms, as well.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Transcripción Genética , Northern Blotting , Genes Reporteros , Cinética , Chaperonas Moleculares , Polifosfatos/análisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...