Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 13368, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770020

RESUMEN

Lipidomic analyses address the problem of characterizing the lipid components of given cells, tissues and organisms by means of chromatographic separations coupled to high-resolution, tandem mass spectrometry analyses. A number of software tools have been developed to help in the daunting task of mass spectrometry signal processing and cleaning, peak analysis and compound identification, and a typical finished lipidomic dataset contains hundreds to thousands of individual molecular lipid species. To provide researchers without a specific technical expertise in mass spectrometry the possibility of broadening the exploration of lipidomic datasets, we have developed liputils, a Python module that specializes in the extraction of fatty acid moieties from individual molecular lipids. There is no prerequisite data format, as liputils extracts residues from RefMet-compliant textual identifiers and from annotations of other commercially available services. We provide three examples of real-world data processing with liputils, as well as a detailed protocol on how to readily process an existing dataset that can be followed with basic informatics skills.

2.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375001

RESUMEN

In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Células Madre Pluripotentes Inducidas/patología , Epitelio Pigmentado de la Retina/patología , Línea Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Glucosa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Permeabilidad , Epitelio Pigmentado de la Retina/metabolismo
3.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31207892

RESUMEN

AIM: Primary human hepatocytes (PHHs) undergo dedifferentiation upon the two-dimensional (2D) culture, which particularly hinders their utility in long-term in vitro studies. Lipids, as a major class of biomolecules, play crucial roles in cellular energy storage, structure, and signaling. Here, for the first time, we mapped the alterations in the lipid profile of the dedifferentiating PHHs and studied the possible role of lipids in the loss of the phenotype of PHHs. Simultaneously, differentially expressed miRNAs associated with changes in the lipids and fatty acids (FAs) of the dedifferentiating PHHs were investigated. METHODS: PHHs were cultured in monolayer and their phenotype was monitored morphologically, genetically, and biochemically for five days. The lipid and miRNA profile of the PHHs were analyzed by mass spectrometry and Agilent microarray, respectively. In addition, 24 key genes involved in the metabolism of lipids and FAs were investigated by qPCR. RESULTS: The typical morphology of PHHs was lost from day 3 onward. Additionally, ALB and CYP genes were downregulated in the cultured PHHs. Lipidomics revealed a clear increase in the saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) containing lipids, but a decrease in the polyunsaturated fatty acids (PUFA) containing lipids during the dedifferentiation of PHHs. In line with this, FASN, SCD, ELOVL1, ELOVL3, and ELOVL7 were upregulated but ELOVL2 was downregulated in the dedifferentiated PHHs. Furthermore, differentially expressed miRNAs were identified, and the constantly upregulated miR-27a and miR-21, and downregulated miR-30 may have regulated the synthesis, accumulation and secretion of PHH lipids during the dedifferentiation. CONCLUSION: Our results showed major alterations in the molecular lipid species profiles, lipid-metabolizing enzyme expression as wells as miRNA profiles of the PHHs during their prolonged culture, which in concert could play important roles in the PHHs' loss of phenotype. These findings promote the understanding from the dedifferentiation process and could help in developing optimal culture conditions, which better meet the needs of the PHHs and support their original phenotype.


Asunto(s)
Desdiferenciación Celular , Hepatocitos/citología , Metabolismo de los Lípidos , MicroARNs/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Células Cultivadas , Citocromos/genética , Citocromos/metabolismo , Elongasas de Ácidos Grasos , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Hepatocitos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Albúmina Sérica Humana/genética , Albúmina Sérica Humana/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Regulación hacia Arriba
4.
Cells ; 8(6)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208058

RESUMEN

Dilated cardiomyopathy (DCM) is one of the leading causes of heart failure and heart transplantation. A portion of familial DCM is due to mutations in the LMNA gene encoding the nuclear lamina proteins lamin A and C and without adequate treatment these patients have a poor prognosis. To get better insights into pathobiology behind this disease, we focused on modeling LMNA-related DCM using human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM). Primary skin fibroblasts from DCM patients carrying the most prevalent Finnish founder mutation (p.S143P) in LMNA were reprogrammed into hiPSCs and further differentiated into cardiomyocytes (CMs). The cellular structure, functionality as well as gene and protein expression were assessed in detail. While mutant hiPSC-CMs presented virtually normal sarcomere structure under normoxia, dramatic sarcomere damage and an increased sensitivity to cellular stress was observed after hypoxia. A detailed electrophysiological evaluation revealed bradyarrhythmia and increased occurrence of arrhythmias in mutant hiPSC-CMs on ß-adrenergic stimulation. Mutant hiPSC-CMs also showed increased sensitivity to hypoxia on microelectrode array and altered Ca2+ dynamics. Taken together, p.S143P hiPSC-CM model mimics hallmarks of LMNA-related DCM and provides a useful tool to study the underlying cellular mechanisms of accelerated cardiac degeneration in this disease.


Asunto(s)
Cardiomiopatía Dilatada/patología , Células Madre Pluripotentes Inducidas/patología , Lamina Tipo A/metabolismo , Modelos Biológicos , Adulto , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/patología , Calcio/metabolismo , Cardiomiopatía Dilatada/complicaciones , Agregación Celular , Diferenciación Celular , Línea Celular , Femenino , Humanos , Hipoxia/patología , Masculino , Ratones , Microelectrodos , Persona de Mediana Edad , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Sarcómeros/metabolismo , Estrés Fisiológico , Adulto Joven
5.
Sci Rep ; 9(1): 3562, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837492

RESUMEN

Hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells (iPSCs) provide a renewable source of cells for drug discovery, disease modelling and cell-based therapies. Here, by using GRO-Seq we provide the first genome-wide analysis of the nascent RNAs in iPSCs, HLCs and primary hepatocytes to extend our understanding of the transcriptional changes occurring during hepatic differentiation process. We demonstrate that a large fraction of hepatocyte-specific genes are regulated at transcriptional level and identify hundreds of differentially expressed non-coding RNAs (ncRNAs), including primary miRNAs (pri-miRNAs) and long non-coding RNAs (lncRNAs). Differentiation induced alternative transcription start site (TSS) usage between the cell types as evidenced for miR-221/222 and miR-3613/15a/16-1 clusters. We demonstrate that lncRNAs and coding genes are tightly co-expressed and could thus be co-regulated. Finally, we identified sets of transcriptional regulators that might drive transcriptional changes during hepatocyte differentiation. These included RARG, E2F1, SP1 and FOXH1, which were associated with the down-regulated transcripts, and hepatocyte-specific TFs such as FOXA1, FOXA2, HNF1B, HNF4A and CEBPA, as well as RXR, PPAR, AP-1, JUNB, JUND and BATF, which were associated with up-regulated transcripts. In summary, this study clarifies the role of regulatory ncRNAs and TFs in differentiation of HLCs from iPSCs.


Asunto(s)
Reprogramación Celular/genética , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Transcriptoma , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética
6.
J Cell Physiol ; 234(4): 3744-3761, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146765

RESUMEN

Hepatocyte-like cells (HLCs) differentiated from human-induced pluripotent stem cells offer an alternative platform to primary human hepatocytes (PHHs) for studying the lipid metabolism of the liver. However, despite their great potential, the lipid profile of HLCs has not yet been characterized. Here, we comprehensively studied the lipid profile and fatty acid (FA) metabolism of HLCs and compared them with the current standard hepatocyte models: HepG2 cells and PHHs. We differentiated HLCs by five commonly used methods from three cell lines and thoroughly characterized them by gene and protein expression. HLCs generated by each method were assessed for their functionality and the ability to synthesize, elongate, and desaturate FAs. In addition, lipid and FA profiles of HLCs were investigated by both mass spectrometry and gas chromatography and then compared with the profiles of PHHs and HepG2 cells. HLCs resembled PHHs by expressing hepatic markers: secreting albumin, lipoprotein particles, and urea, and demonstrating similarities in their lipid and FA profile. Unlike HepG2 cells, HLCs contained low levels of lysophospholipids similar to the content of PHHs. Furthermore, HLCs were able to efficiently use the exogenous FAs available in their medium and simultaneously modify simple lipids into more complex ones to fulfill their needs. In addition, we propose that increasing the polyunsaturated FA supply of the culture medium may positively affect the lipid profile and functionality of HLCs. In conclusion, our data showed that HLCs provide a functional and relevant model to investigate human lipid homeostasis at both molecular and cellular levels.


Asunto(s)
Diferenciación Celular , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos , Forma de la Célula , Cromatografía de Gases , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Metabolismo de los Lípidos/genética , Lipidómica/métodos , Lisofosfolípidos/metabolismo , Espectrometría de Masas , Fenotipo , Cultivo Primario de Células
7.
Artículo en Inglés | MEDLINE | ID: mdl-29423397

RESUMEN

Induced pluripotent stem cells (iPSCs) avoid many of the restrictions that hamper the application of human embryonic stem cells: limited availability of source material due to legal restrictions in some countries, immunogenic rejection and ethical concerns. Also, the donor's clinical phenotype is often known when working with iPSCs. Therefore, iPSCs seem ideal to tackle the two biggest tasks of regenerative medicine: degenerative diseases with genetic cause (e.g., Duchenne's muscular dystrophy) and organ replacement in age-related diseases (e.g., end-stage heart or renal failure), especially in combination with recently developed gene-editing tools. In the setting of autologous transplantation in elderly patients, donor age becomes a potentially relevant factor that needs to be assessed. Here, we review and critically discuss available data pertinent to the questions: How does donor age influence the reprogramming process and iPSC functionality? Would it even be possible to reprogram senescent somatic cells? How does donor age affect iPSC differentiation into specialised cells and their functionality? We also identify research needs, which might help resolve current unknowns. Until recently, most hallmarks of ageing were attributed to an accumulation of DNA damage over time, and it was thus expected that DNA damage from a somatic cell would accumulate in iPSCs and the cells derived from them. In line with this, a decreased lifespan of cloned organisms compared with the donor was also observed in early cloning experiments. Therefore, it was questioned for a time whether iPSC derived from an old individual's somatic cells would suffer from early senescence and, thus, may not be a viable option either for disease modelling nor future clinical applications. Instead, typical signs of cellular ageing are reverted in the process of iPSC reprogramming, and iPSCs from older donors do not show diminished differentiation potential nor do iPSC-derived cells from older donors suffer early senescence or show functional impairments when compared with those from younger donors. Thus, the data would suggest that donor age does not limit iPSC application for modelling genetic diseases nor regenerative therapies. However, open questions remain, e.g., regarding the potential tumourigenicity of iPSC-derived cells and the impact of epigenetic pattern retention.

8.
Dis Model Mech ; 10(9): 1141-1153, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733363

RESUMEN

Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem cells (iPSCs) offer an alternative model to primary human hepatocytes to study lipid aberrations. However, the detailed lipid profile of HLCs is yet unknown. In the current study, functional HLCs were differentiated from iPSCs generated from dermal fibroblasts of three individuals by a three-step protocol through the definitive endoderm (DE) stage. In parallel, detailed lipidomic analyses as well as gene expression profiling of a set of lipid-metabolism-related genes were performed during the entire differentiation process from iPSCs to HLCs. Additionally, fatty acid (FA) composition of the cell culture media at different stages was determined. Our results show that major alterations in the molecular species of lipids occurring during DE and early hepatic differentiation stages mainly mirror the quality and quantity of the FAs supplied in culture medium at each stage. Polyunsaturated phospholipids and sphingolipids with a very long FA were produced in the cells at a later stage of differentiation. This work uncovers the previously unknown lipid composition of iPSC-HLCs and its alterations during the differentiation in conjunction with the expression of key lipid-associated genes. Together with biochemical, functional and gene expression measurements, the lipidomic analyses allowed us to improve our understanding of the concerted influence of the exogenous metabolite supply and cellular biosynthesis essential for iPSC-HLC differentiation and function. Importantly, the study describes in detail a cell model that can be applied in exploring, for example, the lipid metabolism involved in the development of fatty liver disease or atherosclerosis.


Asunto(s)
Hepatocitos/citología , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos , Metabolómica/métodos , Animales , Diferenciación Celular , Línea Celular , Ésteres del Colesterol/metabolismo , Endodermo/citología , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos/genética , Ratones , Fosfatidilcolinas/metabolismo , Esfingolípidos/metabolismo
9.
Beilstein J Org Chem ; 9: 1119-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23843903

RESUMEN

The cyclization of cyclohexane-1,3-diones with various substituted pyridinium salts afforded functionalized 8-oxa-10-aza-tricyclo[7.3.1.0(2,7)]trideca-2(7),11-dienes. The reaction proceeds by regioselective attack of the central carbon atom of the 1,3-dicarbonyl unit to 4-position of the pyridinium salt and subsequent cyclization by base-assisted proton migration and nucleophilic addition of the oxygen atom to the 2-position, as was elucidated by DFT computations. Fairly extensive screening of bases and additives revealed that the presence of potassium cations is essential for formation of the product.

10.
Mater Sci Eng C Mater Biol Appl ; 33(5): 2669-78, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23623083

RESUMEN

In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol-gel derived bioactive-glass (70S30C; 70% SiO2, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 µm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry.


Asunto(s)
Desarrollo Óseo , Gelatina/química , Vidrio , Ingeniería de Tejidos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...