Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 9(1)2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-27898771

RESUMEN

Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools.


Asunto(s)
Genes de Plantas/genética , Ligamiento Genético , Semillas/anatomía & histología , Semillas/genética , Triticum/anatomía & histología , Triticum/genética , Mapeo Cromosómico , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
2.
Theor Appl Genet ; 126(8): 1977-90, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23715938

RESUMEN

Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r (2) of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.


Asunto(s)
Infertilidad Vegetal/genética , Infertilidad Vegetal/efectos de la radiación , Mapeo de Híbrido por Radiación , Triticum/genética , Triticum/efectos de la radiación , Cromosomas de las Plantas/genética , Variación Genética/efectos de la radiación , Genotipo , Meiosis/genética , Plantas Modificadas Genéticamente/efectos de la radiación , Semillas/genética , Semillas/efectos de la radiación , Eliminación de Secuencia/genética , Eliminación de Secuencia/efectos de la radiación
3.
Cytogenet Genome Res ; 129(1-3): 234-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20501975

RESUMEN

Radiation hybrid (RH) mapping is based on radiation-induced chromosome breakage rather than meiotic recombination, as a means to induce marker segregation for mapping. To date, the implementation of this mapping approach in hexaploid (Triticum aestivum L.; 2n = 6x = 42; AABBDD) and tetraploid (T. turgidum L.; 2n = 4x = 28; AABB) wheat has concentrated on the production of mapping panels for individual chromosomes. In order to extend the usefulness of this approach, we have devised a method to produce panels for the simultaneous mapping of all chromosomes of the D subgenome of hexaploid wheat. In this approach, seeds of hexaploid wheat (AABBDD) are irradiated and the surviving plants are crossed to tetraploid wheat (AABB) to produce a mapping panel based on quasi-pentaploids (AABBD). Chromosome lesions in the A and B genomes are largely masked in the quasi-pentaploids due to the presence of A- and B-genome chromosomes from the tetraploid parent. On the other hand, the chromosomes from the D-genome are present in one copy (hemizygous) and allow radiation hybrid mapping of all D-genome chromosomes simultaneously. Our analyses showed that transmission of D-genome chromosomes was apparently normal and that radiation-induced chromosome breakage along D-genome chromosomes was homogeneous. Chromosome breakage levels between D-genome chromosomes were comparable except for chromosome 6D which suffered greater chromosome breakage. These results demonstrate the feasibility of constructing D-genome radiation hybrids (DGRHs) in wheat.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta , Mapeo de Híbrido por Radiación/métodos , Triticum/genética , Rotura Cromosómica , Cromosomas de las Plantas/efectos de la radiación , Cruzamientos Genéticos , ADN de Plantas/genética , Rayos gamma , Marcadores Genéticos , Poliploidía , Triticum/efectos de la radiación
4.
Cytogenet Genome Res ; 120(3-4): 233-40, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18504352

RESUMEN

Radiation hybrid (RH) and HAPPY mapping are two technologies used in animal systems that have attracted the attention of the plant genetics community because they bridge the resolution gap between meiotic and BAC-based physical mapping that would facilitate the analysis of plant species lacking substantial genomics resources. Research has shown that the essence of these approaches can be applied and that a variety of strategies can be used to produce mapping panels. Mapping panels composed of live plants, protoplast fusion cultures, and sub-genomic DNA samples have been described. The resolution achievable by RH mapping panels involving live-plant derivatives of a monosomic maize (Zea mays) chromosome 9 addition in allohexaploid oat (Avena sativa), a monosomic chromosome 1D addition in allotetraploid durum wheat (Triticum turgidum), and interspecific hybrids between two tetraploid cotton species (G. hirsutum and G. barbadense), has been estimated to range from 0.6 to 6 Mb. On the other hand, a more comprehensive evaluation of one panel from durum wheat suggests that a higher mapping resolution (approximately 200 kb) is possible. In cases involving RH mapping panels based on barley (Hordeum vulgare)-tobacco (Nicotiana tabacum) protoplast fusions or a HAPPY mapping panel based on genomic DNA from Arabidopsis thaliana, the potential mapping resolution appears to be higher (50 to 200 kb). Despite these encouraging results, the application of either RH or HAPPY mapping in plants is still in the experimental phase and additional work is clearly needed before these methods are more routinely utilized.


Asunto(s)
Mapeo Físico de Cromosoma/métodos , Plantas/genética , Mapeo de Híbrido por Radiación/métodos , Citogenética , ADN de Plantas/genética , Genoma de Planta , Plantas Modificadas Genéticamente/genética , Ploidias
5.
Genome ; 49(5): 531-44, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16767178

RESUMEN

The US Wheat Genome Project, funded by the National Science Foundation, developed the first large public Triticeae expressed sequence tag (EST) resource. Altogether, 116,272 ESTs were produced, comprising 100,674 5' ESTs and 15 598 3' ESTs. These ESTs were derived from 42 cDNA libraries, which were created from hexaploid bread wheat (Triticum aestivum L.) and its close relatives, including diploid wheat (T. monococcum L. and Aegilops speltoides L.), tetraploid wheat (T. turgidum L.), and rye (Secale cereale L.), using tissues collected from various stages of plant growth and development and under diverse regimes of abiotic and biotic stress treatments. ESTs were assembled into 18,876 contigs and 23,034 singletons, or 41,910 wheat unigenes. Over 90% of the contigs contained fewer than 10 EST members, implying that the ESTs represented a diverse selection of genes and that genes expressed at low and moderate to high levels were well sampled. Statistical methods were used to study the correlation of gene expression patterns, based on the ESTs clustered in the 1536 contigs that contained at least 10 5' EST members and thus representing the most abundant genes expressed in wheat. Analysis further identified genes in wheat that were significantly upregulated (p < 0.05) in tissues under various abiotic stresses when compared with control tissues. Though the function annotation cannot be assigned for many of these genes, it is likely that they play a role associated with the stress response. This study predicted the possible functionality for 4% of total wheat unigenes, which leaves the remaining 96% with their functional roles and expression patterns largely unknown. Nonetheless, the EST data generated in this project provide a diverse and rich source for gene discovery in wheat.


Asunto(s)
Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Triticum/genética , Triticum/metabolismo , Análisis por Conglomerados , Mapeo Contig , Recolección de Datos , Bases de Datos Genéticas , Biblioteca de Genes , Genes de Plantas , Filogenia , Poliploidía , Distribución Tisular , Triticum/crecimiento & desarrollo
6.
Heredity (Edinb) ; 96(1): 93-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16189540

RESUMEN

Seed dormancy is a key adaptive trait under polygenic control in many plants. We introduced the chromosomal regions containing the dormancy QTLs qSD1, qSD7-1, and qSD12 from an accession of weedy rice into a nondormant genetic background to examine component genetic effects and their interactions with time of afterripening (DAR). A BC4F2 plant, which was heterozygous for the three loci, was selected to develop the BC4F3 population. Single point analysis detected only qSD7-1 and qSD12 (R2 = 38-72%) at 10, 30, and 50 DAR in the population. However, multiple linear regression analysis detected genetic effects of the three QTLs and their trigenic epistasis, an environmental effect of DAR (E), and interactions of E with qSD12 and with the qSD1 x qSD7-1 and qSD7-1 x qSD12 epistases. The linear model demonstrates that QTL main effects varied with DAR, and that some epistasis or epistasis-by-DAR interactions partially counteract the main effects. The three QTLs were isolated as single Mendelian factors from the BC4F3 population and estimated for component genic effects based on the BC4F4 populations. Isolation improved estimation of the qSD1 effect and confirmed the major effect of qSD12. The qSD1 and qSD12 loci displayed a gene-additive effect. The qSD7-1, which was further narrowed to a chromosomal region encompassing the red pericarp color gene Rc, displayed gene additive and dominant effects.


Asunto(s)
Patrón de Herencia , Oryza/genética , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Adaptación Fisiológica , Color , Genética de Población , Oryza/fisiología , Análisis de Regresión
7.
Phytopathology ; 96(8): 885-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18943754

RESUMEN

ABSTRACT Race 3 of the fungus Pyrenophora tritici-repentis, causal agent of tan spot, induces differential symptoms in tetraploid and hexaploid wheat, causing necrosis and chlorosis, respectively. This study was conducted to examine the genetic control of resistance to necrosis induced by P. tritici-repentis race 3 and to map resistance genes identified in tetraploid wheat (Triticum turgidum). A mapping population of recombinant inbred lines (RILs) was developed from a cross between the resistant genotype T. tur-gidum no. 283 (PI 352519) and the susceptible durum cv. Coulter. Based on the reactions of the Langdon-T. dicoccoides (LDN[DIC]) disomic substitution lines, chromosomal location of the resistance genes was determined and further molecular mapping of the resistance genes for race 3 was conducted in 80 RILs of the cross T. turgidum no. 283/Coulter. Plants were inoculated at the two-leaf stage and disease reaction was assessed 8 days after inoculation based on lesion type. Disease reaction of the LDN(DIC) lines and molecular mapping on the T. turgidum no. 283/Coulter population indicated that the gene, designated tsn2, conditioning resistance to race 3 is located on the long arm of chromosome 3B. Genetic analysis of the F(2) generation and of the F(4:5) and F(6:7) families indicated that a single recessive gene controlled resistance to necrosis induced by race 3 in the cross studied.

8.
J Hered ; 96(4): 404-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15843637

RESUMEN

The action of species cytoplasm specific (scs) gene(s) can be observed when a durum (Triticum turgidum L.) nucleus is placed in the Aegilops longissimum S. & M. cytoplasm. This alloplasmic combination, (lo) durum, results in nonviable progeny. A scs gene derived from T. timopheevii Zhuk. (scs(ti)) produced compatibility with the (lo) cytoplasm. The resulting hemizygous (lo) scs(ti)- durum line was male sterile and when crossed to normal durum produced a 1:1 ratio of plump, viable (PV) seeds with scs(ti) and shriveled inviable (SIV) seeds without scs(ti). In a systematic characterization of durum lines an unusual line was identified that when crossed to (lo) scs(ti)- produced all PV seeds. When planted these PV seeds segregated at a 1:1 ratio of normal vigor plants (NVPs) and low vigor plants (LVPs). The LVP senescence before full maturity. The NVPs were male sterile and when crossed to common durum lines resulted in all plump seeds that again segregated at a 1:1 ratio of NVPs to LVPs. The crosses of these NVPs to common durum lines resulted in a 1:1 ratio of PV to SIV seeds. This study was extended to 317 individuals segregating for scs(ti) and the new locus, derived from durum wheat (scs(d)), establishing the allelic relationship of these two genes.


Asunto(s)
Genes de Plantas/genética , Triticum/genética , Cruzamientos Genéticos , Citoplasma/genética , Vigor Híbrido
9.
Genetics ; 168(2): 585-93, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514037

RESUMEN

This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.


Asunto(s)
Mapeo Cromosómico , Biología Computacional , Mapeo Contig , Etiquetas de Secuencia Expresada/química , Eliminación de Gen , Triticum/genética , Southern Blotting , Sondas de ADN , Biblioteca de Genes
10.
Genetics ; 168(2): 595-608, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514038

RESUMEN

A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 "unigenes." Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature.


Asunto(s)
Etiquetas de Secuencia Expresada/química , Biblioteca de Genes , Triticum/genética , Vectores Genéticos , Análisis de Secuencia de ADN , Técnica de Sustracción
11.
Genetics ; 168(2): 609-23, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514039

RESUMEN

A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Etiquetas de Secuencia Expresada , Oryza/genética , Ploidias , Triticum/genética , Genes de Plantas , Genoma de Planta , Alineación de Secuencia
12.
Genetics ; 168(2): 639-50, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514041

RESUMEN

The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Genoma de Planta , Alineación de Secuencia
13.
Genetics ; 168(2): 625-37, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514040

RESUMEN

The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Genoma de Planta , Ploidias , Alineación de Secuencia
14.
Genetics ; 168(2): 651-63, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514042

RESUMEN

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Triticum/genética , Eliminación de Gen , Duplicación de Gen , Biblioteca de Genes , Genoma de Planta
15.
Genetics ; 168(2): 677-86, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514044

RESUMEN

To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Eliminación de Gen , Genes de Plantas , Triticum/genética , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Genoma de Planta , Alineación de Secuencia
16.
Genetics ; 168(2): 665-76, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514043

RESUMEN

We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas , Oryza/genética , Triticum/genética , Etiquetas de Secuencia Expresada , Genoma de Planta , Alineación de Secuencia
17.
Genetics ; 168(2): 687-99, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514045

RESUMEN

The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Triticum/genética , Eliminación de Gen , Duplicación de Gen , Marcadores Genéticos , Genoma de Planta , Hordeum/genética , Oryza/genética , Alineación de Secuencia
18.
Genetics ; 168(2): 701-12, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514046

RESUMEN

Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Genoma de Planta , Triticum/genética , Marcadores Genéticos , Ploidias , Sitios de Carácter Cuantitativo , Alineación de Secuencia
19.
Theor Appl Genet ; 106(6): 1027-31, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12671750

RESUMEN

During the past decade Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe has resulted in severe grain yield and quality losses of wheat (Triticum aestivum L.) in the Northern Great Plains of the U.S. Given the complexity of breeding for FHB resistance, molecular markers associated with this trait will be valuable in accelerating efforts to breed resistant cultivars. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) for FHB resistance in wheat using a set of lines obtained by several cycles of crossing to North Dakota adapted genotypes, which derived their resistance from cv. Sumai 3. Microsatellite markers spanning the wheat genome were used to screen parents and derived lines. Polymorphisms for parental alleles were compared to disease scores for Type II resistance. The probability of linkage between markers and introgressed resistance genes was calculated using a binomial probability formula based on the assumption that a molecular marker at a specific distance from the introgressed gene, in a near-isogenic line (NIL), will carry the donor-parent allele as a function of the distance between marker and gene and the number of backcrosses/selfs performed in deriving the NIL. Microsatellite loci Xgwm533 and Xgwm274 were significantly associated with QTL for FHB resistance.


Asunto(s)
Fusarium , Sitios de Carácter Cuantitativo , Triticum/genética , Interpretación Estadística de Datos , Repeticiones de Microsatélite , North Dakota , Triticum/microbiología
20.
Plant Mol Biol ; 48(5-6): 625-32, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11999839

RESUMEN

The devastating effect of Fusarium head blight (FHB) caused by Fusarium graminearum has led to significant financial losses across the Upper Midwest of the USA. These losses have spurred the need for research in biological, chemical, and genetic control methods for this disease. To date, most of the research on FHB resistance has concentrated on hexaploid wheat (Triticum aestivum L.) lines originating from China. Other sources of resistance to FHB would be desirable. One other source of resistance for both hexaploid wheat and tetraploid durum wheat (T. turgidum L. var. durum) is the wild tetraploid, T. turgidum L. var. dicoccoides (T. dicoccoides). Previous analysis of the 'Langdon'-T. dicoccoides chromosome substitution lines, LDN(Dic), indicated that the chromosome 3A substitution line expresses moderate levels of resistance to FHB. LDN(Dic-3A) recombinant inbred chromosome lines (RICL) were used to generate a linkage map of chromosome 3A with 19 molecular markers spanning a distance of 155.2 cM. The individual RICL and controls were screened for their FHB phenotype in two greenhouse seasons. Analysis of 83 RICL identified a single major quantitative trait locus, Qfhs.ndsu-3AS, that explains 37% of the phenotypic or 55% of the genetic variation for FHB resistance. A microsatellite locus, Xgwm2, is tightly linked to the highest point of the QTL peak. A region of the LDN (Dic-3A) chromosome associated with the QTL for FHB resistance encompasses a 29.3 cM region from Xmwg14 to Xbcd828.


Asunto(s)
Fusarium/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Poliploidía , Carácter Cuantitativo Heredable , Triticum/genética , Mapeo Cromosómico , ADN de Plantas/genética , Fusarium/patogenicidad , Genes de Plantas/genética , Marcadores Genéticos , Genotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...