Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Front Cell Dev Biol ; 12: 1399005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114569

RESUMEN

Introduction: Many survivors of preterm birth (<37 weeks gestation) have lifelong respiratory deficits, the drivers of which remain unknown. Influencers of pathophysiological outcomes are often detectable at the gene level and pinpointing these differences can help guide targeted research and interventions. This study provides the first transcriptomic analysis of primary nasal airway epithelial cells in survivors of preterm birth at approximately 1 year of age. Methods: Nasal airway epithelial brushings were collected, and primary cell cultures established from term (>37 weeks gestation) and very preterm participants (≤32 weeks gestation). Ex vivo RNA was collected from brushings with sufficient cell numbers and in vitro RNA was extracted from cultured cells, with bulk RNA sequencing performed on both the sample types. Differential gene expression was assessed using the limma-trend pipeline and pathway enrichment identified using Reactome and GO analysis. To corroborate gene expression data, cytokine concentrations were measured in cell culture supernatant. Results: Transcriptomic analysis to compare term and preterm cells revealed 2,321 genes differentially expressed in ex vivo samples and 865 genes differentially expressed in cultured basal cell samples. Over one third of differentially expressed genes were related to host immunity, with interferon signalling pathways dominating the pathway enrichment analysis and IRF1 identified as a hub gene. Corroboration of disrupted interferon release showed that concentrations of IFN-α2 were below measurable limits in term samples but elevated in preterm samples [19.4 (76.7) pg/ml/µg protein, p = 0.03]. IFN-γ production was significantly higher in preterm samples [3.3 (1.5) vs. 9.4 (17.7) pg/ml/µg protein; p = 0.01] as was IFN-ß [7.8 (2.5) vs. 13.6 (19.5) pg/ml/µg protein, p = 0.01]. Conclusion: Host immunity may be compromised in the preterm nasal airway epithelium in early life. Altered immune responses may lead to cycles of repeated infections, causing persistent inflammation and tissue damage which can have significant impacts on long-term respiratory function.

2.
Crit Rev Microbiol ; : 1-22, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949254

RESUMEN

Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia. In this review, we explore current and novel therapeutic options for overcoming therapeutic failure when dealing with A. baumannii-associated pneumonia. Among them, antibiotic combination therapy administering several drugs simultaneously or alternately, is one promising approach for optimizing therapeutic success. However, it has been associated with inconsistent and inconclusive therapeutic outcomes across different studies. Therefore, it is critical to undertake additional clinical trials to ascertain the clinical effectiveness of different antibiotic combinations. We also discuss the prospective roles of novel antimicrobial therapies including antimicrobial peptides, bacteriophage-based therapy, repurposed drugs, naturally-occurring compounds, nanoparticle-based therapy, anti-virulence strategies, immunotherapy, photodynamic and sonodynamic therapy, for utilizing them as additional alternative therapy while tackling A. baumannii-associated pneumonia. Importantly, these innovative therapies further require pharmacokinetic and pharmacodynamic evaluation for safety, stability, immunogenicity, toxicity, and tolerability before they can be clinically approved as an alternative rescue therapy for A. baumannii-associated pulmonary infections.

3.
Chemosphere ; 362: 142621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880256

RESUMEN

BACKGROUND: Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS: Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION: These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.


Asunto(s)
Biocombustibles , Ratones Endogámicos BALB C , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Biocombustibles/toxicidad , Ratones , Masculino , Gasolina/toxicidad , Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Líquido del Lavado Bronquioalveolar/química , Exposición por Inhalación
4.
Viruses ; 16(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38932245

RESUMEN

BACKGROUND: Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS: Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS: Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION: By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.


Asunto(s)
Genoma Viral , Metagenómica , Sistema Respiratorio , Viroma , Virus , Humanos , Metagenómica/métodos , Sistema Respiratorio/virología , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Metagenoma , Simulación por Computador , Filogenia , Biología Computacional/métodos , Microbiota , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación
5.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L40-L53, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38712443

RESUMEN

Chorioamnionitis is a common antecedent of preterm birth and induces inflammation and oxidative stress in the fetal lungs. Reducing inflammation and oxidative stress in the fetal lungs may improve respiratory outcomes in preterm infants. Creatine is an organic acid with known anti-inflammatory and antioxidant properties. The objective of the study was to evaluate the efficacy of direct fetal creatine supplementation to reduce inflammation and oxidative stress in fetal lungs arising from an in utero proinflammatory stimulus. Fetal lambs (n = 51) were instrumented at 90 days gestation to receive a continuous infusion of creatine monohydrate (6 mg·kg-1·h-1) or saline for 17 days. Maternal chorioamnionitis was induced with intra-amniotic lipopolysaccharide (LPS; 1 mg, O55:H6) or saline 7 days before delivery at 110 days gestation. Tissue creatine content was assessed with capillary electrophoresis, and inflammatory markers were analyzed with Luminex Magpix and immunohistochemistry. Oxidative stress was measured as the level of protein thiol oxidation. The effects of LPS and creatine were analyzed using a two-way ANOVA. Fetal creatine supplementation increased lung creatine content by 149% (PCr < 0.0001) and had no adverse effects on lung morphology. LPS-exposed groups showed increased levels of interleukin-8 in the bronchoalveolar lavage (PLPS < 0.0001) and increased levels of CD45+ leukocytes (PLPS < 0.0001) and MPO+ (PLPS < 0.0001) cells in the lung parenchyma. Creatine supplementation significantly reduced the levels of CD45+ (PCr = 0.045) and MPO+ cells (PCr = 0.012) in the lungs and reduced thiol oxidation in plasma (PCr < 0.01) and lung tissue (PCr = 0.02). In conclusion, fetal creatine supplementation reduced markers of inflammation and oxidative stress in the fetal lungs arising from chorioamnionitis.NEW & NOTEWORTHY We evaluated the effect of antenatal creatine supplementation to reduce pulmonary inflammation and oxidative stress in the fetal lamb lungs arising from lipopolysaccharide (LPS)-induced chorioamnionitis. Fetal creatine supplementation increased lung creatine content and had no adverse effects on systemic fetal physiology and overall lung architecture. Importantly, fetuses that received creatine had significantly lower levels of inflammation and oxidative stress in the lungs, suggesting an anti-inflammatory and antioxidant benefit of creatine.


Asunto(s)
Corioamnionitis , Creatina , Suplementos Dietéticos , Lipopolisacáridos , Pulmón , Estrés Oxidativo , Animales , Corioamnionitis/tratamiento farmacológico , Corioamnionitis/metabolismo , Corioamnionitis/patología , Creatina/farmacología , Femenino , Estrés Oxidativo/efectos de los fármacos , Embarazo , Ovinos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Neumonía/metabolismo , Neumonía/prevención & control , Neumonía/tratamiento farmacológico , Neumonía/patología , Modelos Animales de Enfermedad , Feto/metabolismo , Feto/efectos de los fármacos
6.
Front Allergy ; 5: 1349741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666051

RESUMEN

Introduction: Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods: The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Discussion: The AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention.

9.
EClinicalMedicine ; 70: 102517, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38516100

RESUMEN

Background: Repurposed drugs with host-directed antiviral and immunomodulatory properties have shown promise in the treatment of COVID-19, but few trials have studied combinations of these agents. The aim of this trial was to assess the effectiveness of affordable, widely available, repurposed drugs used in combination for treatment of COVID-19, which may be particularly relevant to low-resource countries. Methods: We conducted an open-label, randomized, outpatient, controlled trial in Thailand from October 1, 2021, to June 21, 2022, to assess whether early treatment within 48-h of symptoms onset with combinations of fluvoxamine, bromhexine, cyproheptadine, and niclosamide, given to adults with confirmed mild SARS-CoV-2 infection, can prevent 28-day clinical deterioration compared to standard care. Participants were randomly assigned to receive treatment with fluvoxamine alone, fluvoxamine + bromhexine, fluvoxamine + cyproheptadine, niclosamide + bromhexine, or standard care. The primary outcome measured was clinical deterioration within 9, 14, or 28 days using a 6-point ordinal scale. This trial is registered with ClinicalTrials.gov (NCT05087381). Findings: Among 1900 recruited, a total of 995 participants completed the trial. No participants had clinical deterioration by day 9, 14, or 28 days among those treated with fluvoxamine plus bromhexine (0%), fluvoxamine plus cyproheptadine (0%), or niclosamide plus bromhexine (0%). Nine participants (5.6%) in the fluvoxamine arm had clinical deterioration by day 28, requiring low-flow oxygen. In contrast, most standard care arm participants had clinical deterioration by 9, 14, and 28 days. By day 9, 32.7% (110) of patients in the standard care arm had been hospitalized without requiring supplemental oxygen but needing ongoing medical care. By day 28, this percentage increased to 37.5% (21). Additionally, 20.8% (70) of patients in the standard care arm required low-flow oxygen by day 9, and 12.5% (16) needed non-invasive or mechanical ventilation by day 28. All treated groups significantly differed from the standard care group by days 9, 14, and 28 (p < 0.0001). Also, by day 28, the three 2-drug treatments were significantly better than the fluvoxamine arm (p < 0.0001). No deaths occurred in any study group. Compared to standard care, participants treated with the combination agents had significantly decreased viral loads as early as day 3 of treatment (p < 0.0001), decreased levels of serum cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß) as early as day 5 of treatment, and interleukin-8 (IL-8) by day 7 of treatment (p < 0.0001) and lower incidence of post-acute sequelae of COVID-19 (PASC) symptoms (p < 0.0001). 23 serious adverse events occurred in the standard care arm, while only 1 serious adverse event was reported in the fluvoxamine arm, and zero serious adverse events occurred in the other arms. Interpretation: Early treatment with these combinations among outpatients diagnosed with COVID-19 was associated with lower likelihood of clinical deterioration, and with significant and rapid reduction in the viral load and serum cytokines, and with lower burden of PASC symptoms. When started very soon after symptom onset, these repurposed drugs have high potential to prevent clinical deterioration and death in vaccinated and unvaccinated COVID-19 patients. Funding: Ped Thai Su Phai (Thai Ducks Fighting Danger) social giver group.

10.
iScience ; 27(3): 109043, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375225

RESUMEN

This study investigated the potential of using SARS-CoV-2 viral concentrations in dust as an additional surveillance tool for early detection and monitoring of COVID-19 transmission. Dust samples were collected from 8 public locations in 16 districts of Bangkok, Thailand, from June to August 2021. SARS-CoV-2 RNA concentrations in dust were quantified, and their correlation with community case incidence was assessed. Our findings revealed a positive correlation between viral concentrations detected in dust and the relative risk of COVID-19. The highest risk was observed with no delay (0-day lag), and this risk gradually decreased as the lag time increased. We observed an overall decline in viral concentrations in public places during lockdown, closely associated with reduced human mobility. The effective reproduction number for COVID-19 transmission remained above one throughout the study period, suggesting that transmission may persist in locations beyond public areas even after the lockdown measures were in place.

12.
ACS Appl Mater Interfaces ; 15(40): 47833-47844, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768872

RESUMEN

In recent years, the hybrid silicon-molecular electronics technology has been gaining significant attention for applications in sensors, photovoltaics, power generation, and molecular electronics devices. However, Si-H surfaces, which are the platforms on which these devices are formed, are prone to oxidation, compromising the mechanical and electronic stability of the devices. Here, we show that when hydrogen is replaced by deuterium, the Si-D surface becomes significantly more resistant to oxidation when either positive or negative voltages are applied to the Si surface. Si-D surfaces are more resistant to oxidation, and their current-voltage characteristics are more stable than those measured on Si-H surfaces. At positive voltages, the Si-D stability appears to be related to the flat band potential of Si-D being more positive compared to Si-H surfaces, making Si-D surfaces less attractive to oxidizing OH- ions. The limited oxidation of Si-D surfaces at negative potentials is interpreted by the frequencies of the Si-D bending modes being coupled to that of the bulk Si surface phonon modes, which would make the duration of the Si-D excited vibrational state significantly less than that of Si-H. The strong surface isotope effect has implications in the design of silicon-based sensing, molecular electronics, and power-generation devices and the interpretation of charge transfer across them.

13.
Cells ; 12(16)2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37626867

RESUMEN

Pulmonary bacterial infections present a significant health risk to those with chronic respiratory diseases (CRDs) including cystic fibrosis (CF) and chronic-obstructive pulmonary disease (COPD). With the emergence of antimicrobial resistance (AMR), novel therapeutics are desperately needed to combat the emergence of resistant superbugs. Phage therapy is one possible alternative or adjunct to current antibiotics with activity against antimicrobial-resistant pathogens. How phages are administered will depend on the site of infection. For respiratory infections, a number of factors must be considered to deliver active phages to sites deep within the lung. The inhalation of phages via nebulization is a promising method of delivery to distal lung sites; however, it has been shown to result in a loss of phage viability. Although preliminary studies have assessed the use of nebulization for phage therapy both in vitro and in vivo, the factors that determine phage stability during nebulized delivery have yet to be characterized. This review summarizes current findings on the formulation and stability of liquid phage formulations designed for nebulization, providing insights to maximize phage stability and bactericidal activity via this delivery method.


Asunto(s)
Bacteriófagos , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Infecciones del Sistema Respiratorio , Humanos , Antibacterianos/farmacología , Fibrosis Quística/terapia
15.
iScience ; 26(7): 107215, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37496674

RESUMEN

Developing an effective therapy to overcome carbapenemase-positive Klebsiella pneumoniae (CPKp) is an important therapeutic challenge that must be addressed urgently. Here, we explored a Ca-EDTA combination with aztreonam or ceftazidime-avibactam in vitro and in vivo against diverse CPKp clinical isolates. The synergy testing of this study demonstrated that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combination was significantly effective in eliminating planktonic and mature biofilms in vitro, as well as eradicating CPKp infections in vivo. Both combinations revealed significant therapeutic efficacies in reducing bacterial load in internal organs and protecting treated mice from mortality. Conclusively, this is the first in vitro and in vivo study to demonstrate that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combinations provide favorable efficacy and safety for successful eradication of carbapenemase-producing Klebsiella pneumoniae planktonic and biofilm infections.

16.
Front Immunol ; 14: 1200456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304275

RESUMEN

The global population has been severely affected by the coronavirus disease 2019 (COVID-19) pandemic, however, with older age identified as a risk factor, children have been underprioritized. This article discusses the factors contributing to the less severe response observed in children following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including, differing viral entry receptor expression and immune responses. It also discusses how emerging and future variants could present a higher risk to children, including those with underlying comorbidities, in developing severe disease. Furthermore, this perspective discusses the differential inflammatory markers between critical and non-critical cases, as well as discussing the types of variants that may be more pathogenic to children. Importantly, this article highlights where more research is urgently required, in order to protect the most vulnerable of our children.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Niño , Pandemias , Receptores Virales
17.
iScience ; 26(7): 107019, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37351501

RESUMEN

Equitable SARS-CoV-2 surveillance in low-resource communities lacking centralized sewers is critical as wastewater-based epidemiology (WBE) progresses. However, large-scale studies on SARS-CoV-2 detection in wastewater from low-and middle-income countries is limited because of economic and technical reasons. In this study, wastewater samples were collected twice a month from 186 urban and rural subdistricts in nine provinces of Thailand mostly having decentralized and non-sewered sanitation infrastructure and analyzed for SARS-CoV-2 RNA variants using allele-specific RT-qPCR. Wastewater SARS-CoV-2 RNA concentration was used to estimate the real-time incidence and time-varying effective reproduction number (Re). Results showed an increase in SARS-CoV-2 RNA concentrations in wastewater from urban and rural areas 14-20 days earlier than infected individuals were officially reported. It also showed that community/food markets were "hot spots" for infected people. This approach offers an opportunity for early detection of transmission surges, allowing preparedness and potentially mitigating significant outbreaks at both spatial and temporal scales.

18.
Front Med (Lausanne) ; 10: 1088494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265479

RESUMEN

For those born with cystic fibrosis (CF), hyper-concentrated mucus with a dysfunctional structure significantly impacts CF airways, providing a perfect environment for bacterial colonization and subsequent chronic infection. Early treatment with antibiotics limits the prevalence of bacterial pathogens but permanently alters the CF airway microenvironment, resulting in antibiotic resistance and other long-term consequences. With little investment into new traditional antibiotics, safe and effective alternative therapeutic options are urgently needed. One gathering significant traction is bacteriophage (phage) therapy. However, little is known about which phages are effective for respiratory infections, the dynamics involved between phage(s) and the host airway, and associated by-products, including mucus. Work utilizing gut cell models suggest that phages adhere to mucus components, reducing microbial colonization and providing non-host-derived immune protection. Thus, phages retained in the CF mucus layer result from the positive selection that enables them to remain in the mucus layer. Phages bind weakly to mucus components, slowing down the diffusion motion and increasing their chance of encountering bacterial species for subsequent infection. Adherence of phage to mucus could also facilitate phage enrichment and persistence within the microenvironment, resulting in a potent phage phenotype or vice versa. However, how the CF microenvironment responds to phage and impacts phage functionality remains unknown. This review discusses CF associated lung diseases, the impact of CF mucus, and chronic bacterial infection. It then discusses the therapeutic potential of phages, their dynamic relationship with mucus and whether this may enhance or hinder airway bacterial infections in CF.

19.
medRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205501

RESUMEN

Introduction: Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods and Analysis: The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to five years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to six weeks, one, three, and five years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Ethics and Dissemination: Ethical approval has been obtained from Ramsey Health Care HREC WA-SA (#1908). Results will be disseminated through open-access peer-reviewed manuscripts, conference presentations, and through different media channels to consumers, ORIGINS families, and the wider community.

20.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982203

RESUMEN

Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.


Asunto(s)
Contaminantes Atmosféricos , Masculino , Ratones , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Biocombustibles/toxicidad , Biocombustibles/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Azufre , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA