Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004202

RESUMEN

Diet-induced obesity impairs mitochondrial respiratory responses in tissues that are highly metabolically active, such as the heart. However, less is known about the impact of obesity on the respiratory activity of specific cell types, such as splenic B cells. B cells are of relevance, as they play functional roles in obesity-induced insulin resistance, inflammation, and responses to infection. Here, we tested the hypothesis that high-fat-diet (HFD)-induced obesity could impair the mitochondrial respiration of intact and permeabilized splenic CD19+ B cells isolated from C57BL/6J mice and activated ex vivo with lipopolysaccharide (LPS). High-resolution respirometry was used with intact and permeabilized cells. To reveal potential mechanistic targets by which HFD-induced obesity dysregulates B cell mitochondria, we conducted proteomic analyses and 3D serial block face scanning electron microscopy (SBFEM). High-resolution respirometry revealed that intact LPS-stimulated B cells of obese mice, relative to controls, displayed lower ATP-linked, as well as maximal uncoupled, respiration. To directly investigate mitochondrial function, we used permeabilized LPS-stimulated B cells, which displayed increased H2O2 emission and production with obesity. We also examined oxidative phosphorylation efficiency simultaneously, which revealed that oxygen consumption and ATP production were decreased in LPS-stimulated B cells with obesity relative to controls. Despite minimal changes in total respiratory complex abundance, in LPS-stimulated B cells of obese mice, three of the top ten most downregulated proteins were all accessory subunits of respiratory complex I. SBFEM showed that B cells of obese mice, compared to controls, underwent no change in mitochondrial cristae integrity but displayed increased mitochondrial volume that was linked to bioenergetic function. Collectively, these results establish a proof of concept that HFD-induced obesity dysregulates the mitochondrial bioenergetic metabolism of activated splenic B cells.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Lipopolisacáridos/metabolismo , Proteómica , Peróxido de Hidrógeno/metabolismo , Ratones Obesos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Obesidad/metabolismo , Adenosina Trifosfato/metabolismo
2.
Front Cell Neurosci ; 17: 1229731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671169

RESUMEN

Introduction: We previously discovered a pyridazine derivative compound series that can improve cognitive functions in mouse models of Alzheimer's disease. One of the advanced compounds from this series, LDN/OSU-0215111-M3, was selected as the preclinical development candidate. This compound activates local protein translation at the perisynaptic astrocytic process (PAP) and enhances synaptic plasticity sequentially. While biochemical evidence supports the hypothesis that the compound enhances the structural plasticity of the tripartite synapse, its direct structural impact has not been investigated. Methods: Volume electron microscopy was used to study the hippocampal tripartite synapse three-dimensional structure in 3-month-old wild-type FVB/NJ mice after LDN/OSU-0215111-M3 treatment. Results: LDN/OSU-0215111-M3 increased the size of tertiary apical dendrites, the volume of mushroom spines, the proportion of mushroom spines containing spine apparatus, and alterations in the spine distribution across the surface area of tertiary dendrites. Compound also increased the number of the PAP interacting with the mushroom spines as well as the size of the PAP in contact with the spines. Furthermore, proteomic analysis of the isolated synaptic terminals indicated an increase in dendritic and synaptic proteins as well as suggested a possible involvement of the phospholipase D signaling pathway. To further validate that LDN/OSU-0215111-M3 altered synaptic function, electrophysiological studies showed increased long-term potentiation following compound treatment. Discussion: This study provides direct evidence that pyridazine derivatives enhance the structural and functional plasticity of the tripartite synapse.

4.
ASN Neuro ; 15: 17590914221146365, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36591943

RESUMEN

The central nervous system (CNS) can be preconditioned to resist damage by peripheral pretreatment with low-dose gram-negative bacterial endotoxin lipopolysaccharide (LPS). Underlying mechanisms associated with transient protection of the cerebral cortex against traumatic brain injury include increased neuronal production of antiapoptotic and neurotrophic molecules, microglial-mediated displacement of inhibitory presynaptic terminals innervating the soma of cortical projection neurons, and synchronized firing of cortical projection neurons. However, the cell types and signaling responsible for these neuronal and microglial changes are unknown. A fundamental question is whether LPS penetrates the CNS or acts on the luminal surface of brain endothelial cells, thereby triggering an indirect parenchymal neuroprotective response. The present study shows that a low-dose intraperitoneal LPS treatment increases brain endothelial cell activation markers CD54, but does not open the blood-brain barrier or alter brain endothelial cell tight junctions as assessed by electron microscopy. NanoString nCounter transcript analyses of CD31-positive brain endothelial cells further revealed significant upregulation of Cxcl10, C3, Ccl2, Il1ß, Cxcl2, and Cxcl1, consistent with identification of myeloid differentiation primary response 88 (MyD88) as a regulator of these transcripts by pathway analysis. Conditional genetic endothelial cell gene ablation approaches demonstrated that both MyD88-dependent Toll-like receptor 4 (TLR4) signaling and Cxcl10 expression are essential for LPS-induced neuroprotection and microglial activation. These results suggest that C-X-C motif chemokine ligand 10 (CXCL10) production by endothelial cells in response to circulating TLR ligands may directly or indirectly signal to CXCR3 on neurons and/or microglia. Targeted activation of brain endothelial receptors may thus provide an attractive approach for inducing transient neuroprotection.


Asunto(s)
Lipopolisacáridos , Factor 88 de Diferenciación Mieloide , Ratones , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Neuroprotección , Células Endoteliales , Ratones Noqueados , Microglía/metabolismo , Ratones Endogámicos C57BL
5.
PLoS Genet ; 18(11): e1010477, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350884

RESUMEN

Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Ratones , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Axones/metabolismo , Neuroglía , Ratones Noqueados , Modelos Animales de Enfermedad , Comunicación
6.
Prog Neurobiol ; 213: 102264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35283239

RESUMEN

The complexity of astrocyte morphology and syncytial coupling through gap junctions are crucial for astrocyte function in the brain. However, the ultrastructural details of astrocyte arborization and interactions between neighboring astrocytes remain unknown. While a prevailing view is that synapses selectively contact peripheral astrocyte processes, the precise spatial-location selectivity of synapses abutting astrocytes is unresolved. Additionally, knowing the location and quantity of vesicles and mitochondria are prerequisites to answer two emerging questions - whether astrocytes have a signaling role within the brain and whether astrocytes are highly metabolically active. Here, we provided structural context for these questions by tracing and 3D reconstructing three neighboring astrocytes using serial block-face scanning electron microscopy. Our reconstructions reveal a spongiform astrocytic morphology resulting from the abundance of reflexive and leaflet processes. At the interfaces, varying sizes of astrocyte-astrocyte contacts were identified. Inside an astrocyte domain, synapses contact the entire astrocyte, and synapse-astrocyte contacts increase from soma to terminal leaflets. In contrast to densely packed vesicles at synaptic boutons, vesicle-like structures were scant within astrocytes. Lastly, astrocytes contain dense mitochondrial networks with a mitochondrial volume ratio similar to that of neurites. Together, these ultrastructural details should expand our understanding of functional astrocyte-astrocyte and astrocyte-neuron interactions.


Asunto(s)
Astrocitos , Sinapsis , Astrocitos/metabolismo , Encéfalo , Humanos , Mitocondrias , Neuronas/fisiología , Sinapsis/metabolismo
7.
Acta Neuropathol Commun ; 9(1): 34, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648591

RESUMEN

Cognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not fully understood. Here we investigate a mouse model of hippocampal demyelination where twelve weeks of treatment with the oligodendrocyte toxin, cuprizone, demyelinates over 90% of the hippocampus and causes decreased memory/learning. Long-term potentiation (LTP) of hippocampal CA1 pyramidal neurons is considered to be a major cellular readout of learning and memory in the mammalian brain. In acute slices, we establish that hippocampal demyelination abolishes LTP and excitatory post-synaptic potentials of CA1 neurons, while pre-synaptic function of Schaeffer collateral fibers is preserved. Demyelination also reduced Ca2+-mediated firing of hippocampal neurons in vivo. Using three-dimensional electron microscopy, we investigated the number, shape (mushroom, stubby, thin), and post-synaptic densities (PSDs) of dendritic spines that facilitate LTP. Hippocampal demyelination did not alter the number of dendritic spines. Surprisingly, dendritic spines appeared to be more mature in demyelinated hippocampi, with a significant increase in mushroom-shaped spines, more perforated PSDs, and more astrocyte participation in the tripartite synapse. RNA sequencing experiments identified 400 altered transcripts in demyelinated hippocampi. Gene transcripts that regulate myelination, synaptic signaling, astrocyte function, and innate immunity were altered in demyelinated hippocampi. Hippocampal remyelination rescued synaptic transmission, LTP, and the majority of gene transcript changes. We establish that CA1 neurons projecting demyelinated axons silence their dendritic spines and hibernate in a state that may protect the demyelinated axon and facilitates functional recovery following remyelination.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Enfermedades Desmielinizantes/fisiopatología , Espinas Dendríticas/ultraestructura , Hipocampo/patología , Hipocampo/fisiopatología , Esclerosis Múltiple/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Animales , Astrocitos/metabolismo , Disfunción Cognitiva/etiología , Cuprizona/administración & dosificación , Cuprizona/toxicidad , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Potenciación a Largo Plazo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Densidad Postsináptica/metabolismo , Análisis de Secuencia de ARN
8.
Commun Biol ; 3(1): 389, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680996

RESUMEN

Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.


Asunto(s)
Cardiolipinas/metabolismo , Cardiotónicos/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Animales , Peróxido de Hidrógeno/metabolismo , Masculino , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/ultraestructura , Ratas , Ratas Sprague-Dawley
9.
J Comp Neurol ; 528(5): 756-771, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31587284

RESUMEN

Taste buds comprise four types of taste cells: three mature, elongate types, Types I-III; and basally situated, immature postmitotic type, Type IV cells. We employed serial blockface scanning electron microscopy to delineate the characteristics and interrelationships of the taste cells in the circumvallate papillae of adult mice. Type I cells have an indented, elongate nucleus with invaginations, folded plasma membrane, and multiple apical microvilli in the taste pore. Type I microvilli may be either restricted to the bottom of the pore or extend outward reaching midway up into the taste pore. Type II cells (aka receptor cells) possess a large round or oval nucleus, a single apical microvillus extending through the taste pore, and specialized "atypical" mitochondria at functional points of contact with nerve fibers. Type III cells (aka "synaptic cells") are elongate with an indented nucleus, possess a single, apical microvillus extending through the taste pore, and are characterized by a small accumulation of synaptic vesicles at points of contact with nerve fibers. About one-quarter of Type III cells also exhibit an atypical mitochondrion near the presynaptic vesicle clusters at the synapse. Type IV cells (nonproliferative "basal cells") have a nucleus in the lower quarter of the taste bud and a foot process extending to the basement membrane often contacting nerve processes along the way. In murine circumvallate taste buds, Type I cells represent just over 50% of the population, whereas Types II, III, and IV (basal cells) represent 19, 15, and 14%, respectively.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Papilas Gustativas/ultraestructura , Animales , Ratones , Ratones Endogámicos C57BL
10.
Proc Natl Acad Sci U S A ; 115(50): E11807-E11816, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30487224

RESUMEN

Endogenous remyelination of the CNS can be robust and restore function, yet in multiple sclerosis it becomes less complete with time. Promoting remyelination is a major therapeutic goal, both to restore function and to protect axons from degeneration. Remyelination is thought to depend on oligodendrocyte progenitor cells, giving rise to nascent remyelinating oligodendrocytes. Surviving, mature oligodendrocytes are largely regarded as being uninvolved. We have examined this question using two large animal models. In the first model, there is extensive demyelination and remyelination of the CNS, yet oligodendrocytes survive, and in recovered animals there is a mix of remyelinated axons interspersed between mature, thick myelin sheaths. Using 2D and 3D light and electron microscopy, we show that many oligodendrocytes are connected to mature and remyelinated myelin sheaths, which we conclude are cells that have reextended processes to contact demyelinated axons while maintaining mature myelin internodes. In the second model in vitamin B12-deficient nonhuman primates, we demonstrate that surviving mature oligodendrocytes extend processes and ensheath demyelinated axons. These data indicate that mature oligodendrocytes can participate in remyelination.


Asunto(s)
Oligodendroglía/fisiología , Remielinización/fisiología , Animales , Axones/fisiología , Gatos , Diferenciación Celular , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Macaca mulatta , Microscopía Electrónica de Transmisión , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/fisiología , Vaina de Mielina/ultraestructura , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/citología
11.
Sci Signal ; 11(529)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739879

RESUMEN

Conventional chemical synapses in the nervous system involve a presynaptic accumulation of neurotransmitter-containing vesicles, which fuse with the plasma membrane to release neurotransmitters that activate postsynaptic receptors. In taste buds, type II receptor cells do not have conventional synaptic features but nonetheless show regulated release of their afferent neurotransmitter, ATP, through a large-pore, voltage-gated channel, CALHM1. Immunohistochemistry revealed that CALHM1 was localized to points of contact between the receptor cells and sensory nerve fibers. Ultrastructural and super-resolution light microscopy showed that the CALHM1 channels were consistently associated with distinctive, large (1- to 2-µm) mitochondria spaced 20 to 40 nm from the presynaptic membrane. Pharmacological disruption of the mitochondrial respiratory chain limited the ability of taste cells to release ATP, suggesting that the immediate source of released ATP was the mitochondrion rather than a cytoplasmic pool of ATP. These large mitochondria may serve as both a reservoir of releasable ATP and the site of synthesis. The juxtaposition of the large mitochondria to areas of membrane displaying CALHM1 also defines a restricted compartment that limits the influx of Ca2+ upon opening of the nonselective CALHM1 channels. These findings reveal a distinctive organelle signature and functional organization for regulated, focal release of purinergic signals in the absence of synaptic vesicles.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Activación del Canal Iónico , Mitocondrias/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Animales , Ratones , Fibras Nerviosas/metabolismo , Transducción de Señal , Papilas Gustativas/citología , Papilas Gustativas/metabolismo
12.
Nat Med ; 24(3): 338-351, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431744

RESUMEN

Deficits in Schwann cell-mediated remyelination impair functional restoration after nerve damage, contributing to peripheral neuropathies. The mechanisms mediating block of remyelination remain elusive. Here, through small-molecule screening focusing on epigenetic modulators, we identified histone deacetylase 3 (HDAC3; a histone-modifying enzyme) as a potent inhibitor of peripheral myelinogenesis. Inhibition of HDAC3 enhanced myelin growth and regeneration and improved functional recovery after peripheral nerve injury in mice. HDAC3 antagonizes the myelinogenic neuregulin-PI3K-AKT signaling axis. Moreover, genome-wide profiling analyses revealed that HDAC3 represses promyelinating programs through epigenetic silencing while coordinating with p300 histone acetyltransferase to activate myelination-inhibitory programs that include the HIPPO signaling effector TEAD4 to inhibit myelin growth. Schwann cell-specific deletion of either Hdac3 or Tead4 in mice resulted in an elevation of myelin thickness in sciatic nerves. Thus, our findings identify the HDAC3-TEAD4 network as a dual-function switch of cell-intrinsic inhibitory machinery that counters myelinogenic signals and maintains peripheral myelin homeostasis, highlighting the therapeutic potential of transient HDAC3 inhibition for improving peripheral myelin repair.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteína p300 Asociada a E1A/genética , Proteínas Musculares/genética , Regeneración Nerviosa/genética , Traumatismos de los Nervios Periféricos/genética , Remielinización/genética , Factores de Transcripción/genética , Animales , Genoma , Histona Desacetilasas , Humanos , Ratones Transgénicos , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/rehabilitación , Recuperación de la Función/genética , Células de Schwann/metabolismo , Células de Schwann/patología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Transducción de Señal , Factores de Transcripción de Dominio TEA
13.
Glia ; 66(4): 789-800, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29274095

RESUMEN

Fragile X Syndrome (FXS) is the major cause of inherited mental retardation and the leading genetic cause of Autism spectrum disorders. FXS is caused by mutations in the Fragile X Mental Retardation 1 (Fmr1) gene, which results in transcriptional silencing of Fragile X Mental Retardation Protein (FMRP). To elucidate cellular mechanisms involved in the pathogenesis of FXS, we compared dendritic spines in the hippocampal CA1 region of adult wild-type (WT) and Fmr1 knockout (Fmr1-KO) mice. Using diolistic labeling, confocal microscopy, and three-dimensional electron microscopy, we show a significant increase in the diameter of secondary dendrites, an increase in dendritic spine density, and a decrease in mature dendritic spines in adult Fmr1-KO mice. While WT and Fmr1-KO mice had the same mean density of spines, the variance in spine density was three times greater in Fmr1-KO mice. Reduced astrocyte participation in the tripartite synapse and less mature post-synaptic densities were also found in Fmr1-KO mice. We investigated whether the increase in synaptic spine density was associated with altered synaptic pruning during development. Our data are consistent with reduced microglia-mediated synaptic pruning in the CA1 region of Fmr1-KO hippocampi when compared with WT littermates at postnatal day 21, which is the peak period of synaptic pruning in the mouse hippocampus. Collectively, these results support abnormal synaptogenesis and synaptic remodeling in mice deficient in FMRP. Deficits in the maturation and distribution of synaptic spines on dendrites of CA1 hippocampal neurons may play a role in the intellectual disabilities associated with FXS.


Asunto(s)
Región CA1 Hipocampal/patología , Síndrome del Cromosoma X Frágil/patología , Sinapsis/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Imagenología Tridimensional , Inmunohistoquímica , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica , Sinapsis/metabolismo
14.
Exp Eye Res ; 166: 131-139, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29066281

RESUMEN

To assess serial section block-face scanning electron microscopy (SBFSEM) for retinal pigment epithelium (RPE) ultrastructure, we determined the number and distribution within RPE cell bodies of melanosomes (M), lipofuscin (L), and melanolipofuscin (ML). Eyes of 4 Caucasian donors (16M, 32F, 76F, 84M) with unremarkable maculas were sectioned and imaged using an SEM fitted with an in-chamber automated ultramicrotome. Aligned image stacks were generated by alternately imaging an epoxy resin block face using backscattered electrons, then removing a 125 nm-thick layer. Series of 249-499 sections containing 5-24 nuclei were examined per eye. Trained readers manually assigned boundaries of individual cells and x,y,z locations of M, L, and ML. A Density Recovery Profile was computed in three dimensions for M, L, and ML. The number of granules per RPE cell body in 16M, 32F, 76F, and 84M eyes, respectively, was 465 ± 127 (mean ± SD), 305 ± 92, 79 ± 40, and 333 ± 134 for L; 13 ± 9; 6 ± 7, 131 ± 55, and 184 ± 66 for ML; and 29 ± 19, 24 ± 12, 12 ± 7, and 7 ± 3 for M. Granule types were spatially organized, with M near apical processes. The effective radius, a sphere of decreased probability for granule occurrence, was 1 µm for L, ML, and M combined. In conclusion, SBFEM reveals that adult human RPE has hundreds of L, LF, and M and that granule spacing is regulated by granule size alone. When obtained for a larger sample, this information will enable hypothesis testing about organelle turnover and regulation in health, aging, and disease, and elucidate how RPE-specific signals are generated in clinical optical coherence tomography and autofluorescence imaging.


Asunto(s)
Lipofuscina/análisis , Melanosomas/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Epitelio Pigmentado de la Retina/ultraestructura , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino
15.
Glia ; 65(5): 712-726, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28191691

RESUMEN

BACE1 is an indispensable enzyme for generating ß-amyloid peptides, which are excessively accumulated in brains of Alzheimer's patients. However, BACE1 is also required for proper myelination of peripheral nerves, as BACE1-null mice display hypomyelination. To determine the precise effects of BACE1 on myelination, here we have uncovered a role of BACE1 in the control of Schwann cell proliferation during development. We demonstrate that BACE1 regulates the cleavage of Jagged-1 and Delta-1, two membrane-bound ligands of Notch. BACE1 deficiency induces elevated Jag-Notch signaling activity, which in turn facilitates proliferation of Schwann cells. This increase in proliferation leads to shortened internodes and decreased Schmidt-Lanterman incisures. Functionally, evoked compound action potentials in BACE1-null nerves were significantly smaller and slower, with a clear decrease in excitability. BACE1-null nerves failed to effectively use lactate as an alternative energy source under conditions of increased physiological activity. Correlatively, BACE1-null mice showed reduced performance on rotarod tests. Collectively, our data suggest that BACE1 deficiency enhances proliferation of Schwann cell due to the elevated Jag1/Delta1-Notch signaling, but fails to myelinate axons efficiently due to impaired the neuregulin1-ErbB signaling, which has been documented.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Proliferación Celular/fisiología , Células de Schwann/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Axones/metabolismo , Proliferación Celular/genética , Ratones Noqueados , Vaina de Mielina/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Células de Schwann/citología , Nervio Ciático/metabolismo , Transducción de Señal/fisiología
16.
J Cell Biol ; 215(4): 531-542, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27872255

RESUMEN

Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P0 (P0-CNS mice). Mitochondrial pathology and degeneration were prominent in juxtaparanodal axoplasm at 1 mo of age. In wild-type (WT) optic nerve axons, 25% of mitochondria-SER associations occurred on extensions of the mitochondrial outer membrane. Mitochondria-SER associations were reduced by 86% in 1-mo-old P0-CNS juxtaparanodal axoplasm. 1-mo-old P0-CNS optic nerves were more sensitive to oxygen-glucose deprivation and contained less adenosine triphosphate (ATP) than WT nerves. MT pathology and paranodal axonal ovoids were prominent at 6 mo. These data support juxtaparanodal mitochondrial degeneration, reduced mitochondria-SER associations, and reduced ATP production as causes of axonal ovoid formation and axonal degeneration.


Asunto(s)
Axones/metabolismo , Mitocondrias/metabolismo , Proteína Proteolipídica de la Mielina/deficiencia , Vaina de Mielina/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Axones/ultraestructura , Transporte Biológico , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Ratones Transgénicos , Microtúbulos/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/ultraestructura , Nervio Óptico , Fosforilación , Proteínas tau/metabolismo
17.
J Neurosci ; 36(39): 9990-10001, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27683897

RESUMEN

UNLABELLED: The impact of aging on CNS white matter (WM) is of general interest because the global effects of aging on myelinated nerve fibers are more complex and profound than those in cortical gray matter. It is important to distinguish between axonal changes created by normal aging and those caused by neurodegenerative diseases, including multiple sclerosis, stroke, glaucoma, Alzheimer's disease, and traumatic brain injury. Using three-dimensional electron microscopy, we show that in mouse optic nerve, which is a pure and fully myelinated WM tract, aging axons are larger, have thicker myelin, and are characterized by longer and thicker mitochondria, which are associated with altered levels of mitochondrial shaping proteins. These structural alterations in aging mitochondria correlate with lower ATP levels and increased generation of nitric oxide, protein nitration, and lipid peroxidation. Moreover, mitochondria-smooth endoplasmic reticulum interactions are compromised due to decreased associations and decreased levels of calnexin and calreticulin, suggesting a disruption in Ca(2+) homeostasis and defective unfolded protein responses in aging axons. Despite these age-related modifications, axon function is sustained in aging WM, which suggests that age-dependent changes do not lead to irreversible functional decline under normal conditions, as is observed in neurodegenerative diseases. SIGNIFICANCE STATEMENT: Aging is a common risk factor for a number of neurodegenerative diseases, including stroke. Mitochondrial dysfunction and oxidative damage with age are hypothesized to increase risk for stroke. We compared axon-myelin-node-mitochondrion-smooth endoplasmic reticulum (SER) interactions in white matter obtained at 1 and 12 months. We show that aging axons have enlarged volume, thicker myelin, and elongated and thicker mitochondria. Furthermore, there are reduced SER connections to mitochondria that correlate with lower calnexin and calreticulin levels. Despite a prominent decrease in number, elongated aging mitochondria produce excessive stress markers with reduced ATP production. Because axons maintain function under these conditions, our study suggests that it is important to understand the process of normal brain aging to identify neurodegenerative changes.


Asunto(s)
Envejecimiento/patología , Mitocondrias/ultraestructura , Nervio Óptico/ultraestructura , Sustancia Blanca/ultraestructura , Envejecimiento/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Nervio Óptico/fisiología , Relación Estructura-Actividad , Sustancia Blanca/fisiología
18.
J Vis Exp ; (113)2016 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-27501303

RESUMEN

Human brain is a high energy consuming organ that mainly relies on glucose as a fuel source. Glucose is catabolized by brain mitochondria via glycolysis, tri-carboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways to produce cellular energy in the form of adenosine triphosphate (ATP). Impairment of mitochondrial ATP production causes mitochondrial disorders, which present clinically with prominent neurological and myopathic symptoms. Mitochondrial defects are also present in neurodevelopmental disorders (e.g. autism spectrum disorder) and neurodegenerative disorders (e.g. amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases). Thus, there is an increased interest in the field for performing 3D analysis of mitochondrial morphology, structure and distribution under both healthy and disease states. The brain mitochondrial morphology is extremely diverse, with some mitochondria especially those in the synaptic region being in the range of <200 nm diameter, which is below the resolution limit of traditional light microscopy. Expressing a mitochondrially-targeted green fluorescent protein (GFP) in the brain significantly enhances the organellar detection by confocal microscopy. However, it does not overcome the constraints on the sensitivity of detection of relatively small sized mitochondria without oversaturating the images of large sized mitochondria. While serial transmission electron microscopy has been successfully used to characterize mitochondria at the neuronal synapse, this technique is extremely time-consuming especially when comparing multiple samples. The serial block-face scanning electron microscopy (SBFSEM) technique involves an automated process of sectioning, imaging blocks of tissue and data acquisition. Here, we provide a protocol to perform SBFSEM of a defined region from rodent brain to rapidly reconstruct and visualize mitochondrial morphology. This technique could also be used to provide accurate information on mitochondrial number, volume, size and distribution in a defined brain region. Since the obtained image resolution is high (typically under 10 nm) any gross mitochondrial morphological defects may also be detected.


Asunto(s)
Encéfalo , Mitocondrias , Trastorno del Espectro Autista , Humanos , Microscopía Electrónica de Rastreo , Sinapsis
19.
Exp Neurol ; 283(Pt A): 330-40, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27384502

RESUMEN

Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics. We have used a modified cuprizone protocol that causes a consistent and robust demyelination of mouse white matter and cerebral cortex. Spontaneous remyelination occurred significantly faster in the cerebral cortex than in white matter and reactive astrocytes were more abundant in white matter lesions. Remyelination of white matter and cerebral cortex was therapeutically enhanced by daily injections of thyroid hormone triiodothyronine (T3). In summary, we describe an in vivo demyelination/remyelination paradigm that can be powered to determine efficacy of therapies that enhance white matter and cortical remyelination.


Asunto(s)
Encéfalo/patología , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Regeneración/fisiología , Triyodotironina/uso terapéutico , Animales , Axones/patología , Axones/ultraestructura , Encéfalo/ultraestructura , Proteínas de Unión al Calcio/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/inducido químicamente , Inmunosupresores/efectos adversos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Inhibidores de la Monoaminooxidasa/toxicidad , Proteína Proteolipídica de la Mielina/metabolismo , Regeneración/efectos de los fármacos , Sirolimus/efectos adversos , Factores de Tiempo , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Sustancia Blanca/ultraestructura
20.
Nat Neurosci ; 18(4): 511-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25706475

RESUMEN

Axonal damage has been associated with aberrant protein trafficking. We examined a newly characterized class of compounds that target nucleo-cytoplasmic shuttling by binding to the catalytic groove of the nuclear export protein XPO1 (also known as CRM1, chromosome region maintenance protein 1). Oral administration of reversible CRM1 inhibitors in preclinical murine models of demyelination significantly attenuated disease progression, even when started after the onset of paralysis. Clinical efficacy was associated with decreased proliferation of immune cells, characterized by nuclear accumulation of cell cycle inhibitors, and preservation of cytoskeletal integrity even in demyelinated axons. Neuroprotection was not limited to models of demyelination, but was also observed in another mouse model of axonal damage (that is, kainic acid injection) and detected in cultured neurons after knockdown of Xpo1, the gene encoding CRM1. A proteomic screen for target molecules revealed that CRM1 inhibitors in neurons prevented nuclear export of molecules associated with axonal damage while retaining transcription factors modulating neuroprotection.


Asunto(s)
Axones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Carioferinas/metabolismo , Fármacos Neuroprotectores/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Acrilamidas/administración & dosificación , Acrilamidas/farmacocinética , Acrilamidas/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Núcleo Celular/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Carioferinas/antagonistas & inhibidores , Carioferinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacocinética , Proteómica , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Tiazoles/administración & dosificación , Tiazoles/farmacocinética , Tiazoles/farmacología , Resultado del Tratamiento , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...