Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 11(20): 13723-13743, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34707813

RESUMEN

Population genetics is a field of research that predates the current generations of sequencing technology. Those approaches, that were established before massively parallel sequencing methods, have been adapted to these new marker systems (in some cases involving the development of new methods) that allow genome-wide estimates of the four major micro-evolutionary forces-mutation, gene flow, genetic drift, and selection. Nevertheless, classic population genetic markers are still commonly used and a plethora of analysis methods and programs is available for these and high-throughput sequencing (HTS) data. These methods employ various and diverse theoretical and statistical frameworks, to varying degrees of success, to estimate similar evolutionary parameters making it difficult to get a concise overview across the available approaches. Presently, reviews on this topic generally focus on a particular class of methods to estimate one or two evolutionary parameters. Here, we provide a brief history of methods and a comprehensive list of available programs for estimating micro-evolutionary forces. We furthermore analyzed their usage within the research community based on popularity (citation bias) and discuss the implications of this bias for the software community. We found that a few programs received the majority of citations, with program success being independent of both the parameters estimated and the computing platform. The only deviation from a model of exponential growth in the number of citations was found for the presence of a graphical user interface (GUI). Interestingly, no relationship was found for the impact factor of the journals, when the tools were published, suggesting accessibility might be more important than visibility.

2.
Genome Biol Evol ; 5(1): 151-62, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23292136

RESUMEN

Microsatellites, or simple sequence repeats (SSRs), are common and widespread DNA elements in genomes of many organisms. However, their dynamics in genome evolution is unclear, whereby they are thought to evolve neutrally. More available genome sequences along with dated phylogenies allowed for studying the evolution of these repetitive DNA elements along evolutionary time scales. This could be used to compare rates of genome evolution. We show that SSRs in insects can be retained for several hundred million years. Different types of microsatellites seem to be retained longer than others. By comparing Dipteran with Hymenopteran species, we found very similar patterns of SSR loss during their evolution, but both taxa differ profoundly in the rate. Relative to divergence time, Diptera lost SSRs twice as fast as Hymenoptera. The loss of SSRs on the Drosophila melanogaster X-chromosome was higher than on the other chromosomes. However, accounting for generation time, the Diptera show an 8.5-fold slower rate of SSR loss than the Hymenoptera, which, in contrast to previous studies, suggests a faster genome evolution in the latter. This shows that generation time differences can have a profound effect. A faster genome evolution in these insects could be facilitated by several factors very different to Diptera, which is discussed in light of our results on the haplodiploid D. melanogaster X-chromosome. Furthermore, large numbers of SSRs can be found to be in synteny and thus could be exploited as a tool to investigate genome structure and evolution.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Genoma de los Insectos , Himenópteros/genética , Repeticiones de Microsatélite/genética , Animales , Cromosomas de Insectos , Tasa de Mutación , Eliminación de Secuencia , Sintenía , Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA