Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(43): 5590-5593, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38666465

RESUMEN

The coupling of structural transitions to heat capacity changes leads to destabilization of macromolecules at both elevated and lowered temperatures. DNA origami not only exhibit this property but also provide a nanoscopic observable of cold denaturation processes by directing intramolecular strain to the most sensitive elements within their hierarchical architecture.


Asunto(s)
Frío , ADN , Nanoestructuras , Desnaturalización de Ácido Nucleico , ADN/química , Nanoestructuras/química , Conformación de Ácido Nucleico
2.
Nano Lett ; 24(8): 2429-2436, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363878

RESUMEN

DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.


Asunto(s)
Metales Pesados , Nanoestructuras , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Temperatura , Nanotecnología
3.
Chemistry ; 30(4): e202302464, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37909474

RESUMEN

Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO 11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.


Asunto(s)
Adhesión Bacteriana , Óxido de Zinc , Pseudomonas aeruginosa , Péptidos , Espectroscopía de Fotoelectrones , Microscopía de Fuerza Atómica , Biopelículas , Propiedades de Superficie
4.
Molecules ; 26(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809519

RESUMEN

Membrane-scaffolding proteins (MSPs) derived from apolipoprotein A-1 have become a versatile tool in generating nano-sized discoidal membrane mimetics (nanodiscs) for membrane protein research. Recent efforts have aimed at exploiting their controlled lipid protein ratio and size distribution to arrange membrane proteins in regular supramolecular structures for diffraction studies. Thereby, direct membrane protein crystallization, which has remained the limiting factor in structure determination of membrane proteins, would be circumvented. We describe here the formation of multimers of membrane-scaffolding protein MSP1D1-bounded nanodiscs using the thiol reactivity of engineered cysteines. The mutated positions N42 and K163 in MSP1D1 were chosen to support chemical modification as evidenced by fluorescent labeling with pyrene. Minimal interference with the nanodisc formation and structure was demonstrated by circular dichroism spectroscopy, differential light scattering and size exclusion chromatography. The direct disulphide bond formation of nanodiscs formed by the MSP1D1_N42C variant led to dimers and trimers with low yield. In contrast, transmission electron microscopy revealed that the attachment of oligonucleotides to the engineered cysteines of MSP1D1 allowed the growth of submicron-sized tracts of stacked nanodiscs through the hybridization of nanodisc populations carrying complementary strands and a flexible spacer.


Asunto(s)
ADN/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Nanoestructuras/química , Secuencia de Aminoácidos , Apolipoproteína A-I/química , Microscopía Electrónica de Transmisión/métodos , Fosfolípidos/química
5.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153073

RESUMEN

Immobile Holliday junctions represent not only the most fundamental building block of structural DNA nanotechnology but are also of tremendous importance for the in vitro investigation of genetic recombination and epigenetics. Here, we present a detailed study on the room-temperature assembly of immobile Holliday junctions with the help of the single-strand annealing protein Redß. Individual DNA single strands are initially coated with protein monomers and subsequently hybridized to form a rigid blunt-ended four-arm junction. We investigate the efficiency of this approach for different DNA/protein ratios, as well as for different DNA sequence lengths. Furthermore, we also evaluate the potential of Redß to anneal sticky-end modified Holliday junctions into hierarchical assemblies. We demonstrate the Redß-mediated annealing of Holliday junction dimers, multimers, and extended networks several microns in size. While these hybrid DNA-protein nanostructures may find applications in the crystallization of DNA-protein complexes, our work shows the great potential of Redß to aid in the synthesis of functional DNA nanostructures under mild reaction conditions.


Asunto(s)
ADN Cruciforme/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , ADN/química , Temperatura
6.
Angew Chem Int Ed Engl ; 59(34): 14336-14341, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32485088

RESUMEN

High-speed atomic force microscopy (HS-AFM) is widely employed in the investigation of dynamic biomolecular processes at a single-molecule level. However, it remains an open and somewhat controversial question, how these processes are affected by the rapidly scanned AFM tip. While tip effects are commonly believed to be of minor importance in strongly binding systems, weaker interactions may significantly be disturbed. Herein, we quantitatively assess the role of tip effects in a strongly binding system using a DNA origami-based single-molecule assay. Despite its femtomolar dissociation constant, we find that HS-AFM imaging can disrupt monodentate binding of streptavidin (SAv) to biotin (Bt) even under gentle scanning conditions. To a lesser extent, this is also observed for the much stronger bidentate SAv-Bt complex. The presented DNA origami-based assay can be universally employed to quantify tip effects in strongly and weakly binding systems and to optimize the experimental settings for their reliable HS-AFM imaging.


Asunto(s)
ADN/metabolismo , Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos , Proteínas Bacterianas/química , Biotina/análogos & derivados , Biotina/química , ADN/química , Ligandos , Nanoestructuras/química
7.
Small ; 16(13): e1905959, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32130783

RESUMEN

Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+ -containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze-thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze-thaw cycles, 1000 freeze-thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10-3 and 200 × 10-3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long-term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications.


Asunto(s)
Criopreservación , ADN , Nanoestructuras , Criopreservación/métodos , Crioprotectores/farmacología , ADN/química , ADN/efectos de los fármacos , Daño del ADN , Congelación , Glicerol/farmacología , Nanoestructuras/química , Trehalosa/farmacología
8.
Langmuir ; 35(37): 12113-12122, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31441311

RESUMEN

Fibrinogen not only forms fibrin networks if assisted by thrombin but also exhibits self-assembly in dilute aqueous solutions in the absence of thrombin. It could be shown that self-assembly can be triggered in a controlled way by diluting the ionic strength set to a value of 0.14 M NaCl in the starting solutions. The present work unravels the mechanism of this self-assembly process by means of a combination of time-resolved multiangle static and dynamic light scattering and atomic force microscopy. Analysis was carried out as a function of the ionic strength adjusted by the drop in ionic strength and at variable salt compositions at a given final ionic strength. Composition was varied by changing the ratio of NaCl and phosphate buffer. The self-assembly induced by the drop of the ionic strength depends on the final value. The lower the final ionic strength gets, the faster is the self-assembly process. The variation of the salt composition at a given ionic strength has only a marginal effect, which depends on the ionic strength. The self-assembly obeys a step-growth process, where any intermediate cluster can coalesce with any other cluster. Interpretation of the data with a kinetic model based on the approach of von Smoluchowski follows a diffusion-limited cluster aggregation at ionic strength values lower than 30 mM. At an ionic strength of 30 mM, the model has to take into account a size dependence of the rate constant, and at 60 mM a transition is observed to a reaction-limited cluster aggregation.


Asunto(s)
Fibrinógeno/química , Agua/química , Animales , Bovinos , Concentración Osmolar , Cloruro de Sodio/química , Soluciones
9.
Molecules ; 24(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315177

RESUMEN

DNA origami nanostructures are widely employed in various areas of fundamental and applied research. Due to the tremendous success of the DNA origami technique in the academic field, considerable efforts currently aim at the translation of this technology from a laboratory setting to real-world applications, such as nanoelectronics, drug delivery, and biosensing. While many of these real-world applications rely on an intact DNA origami shape, they often also subject the DNA origami nanostructures to rather harsh and potentially damaging environmental and processing conditions. Furthermore, in the context of DNA origami mass production, the long-term storage of DNA origami nanostructures or their pre-assembled components also becomes an issue of high relevance, especially regarding the possible negative effects on DNA origami structural integrity. Thus, we investigated the effect of staple age on the self-assembly and stability of DNA origami nanostructures using atomic force microscopy. Different harsh processing conditions were simulated by applying different sample preparation protocols. Our results show that staple solutions may be stored at -20 °C for several years without impeding DNA origami self-assembly. Depending on DNA origami shape and superstructure, however, staple age may have negative effects on DNA origami stability under harsh treatment conditions. Mass spectrometry analysis of the aged staple mixtures revealed no signs of staple fragmentation. We, therefore, attribute the increased DNA origami sensitivity toward environmental conditions to an accumulation of damaged nucleobases, which undergo weaker base-pairing interactions and thus lead to reduced duplex stability.


Asunto(s)
ADN/química , Nanoestructuras/química , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación de Ácido Nucleico
10.
ACS Appl Mater Interfaces ; 10(51): 44844-44853, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30501167

RESUMEN

The self-organized formation of regular patterns is not only a fascinating topic encountered in a multitude of natural and artificial systems, but also presents a versatile and powerful route toward large-scale nanostructure assembly and materials synthesis. The hierarchical, interface-assisted assembly of DNA origami nanostructures into regular, 2D lattices represents a particularly promising example, as the resulting lattices may exhibit an astonishing degree of order and can be further utilized as masks in molecular lithography. Here, we thus investigate the development of order in such 2D DNA origami lattices assembled on mica surfaces by employing in situ high-speed atomic force microscopy imaging. DNA origami lattice formation is found to resemble thin-film growth in several aspects. In particular, the Na+/Mg2+ ratio controls DNA origami adsorption, surface diffusion, and desorption, and is thus equivalent in its effects to substrate temperature which controls adatom dynamics in thin-film deposition. Consequently, we observe a pronounced dependence of lattice order on Na+ concentration. At low Na+ concentrations, lattice formation resembles random deposition and results in unordered monolayers, whereas very high Na+ concentrations are accompanied by rapid diffusion and especially DNA origami desorption, which prevent lattice formation. At intermediate Na+ concentrations, highly ordered DNA origami lattices are obtained that display an intricate symmetry, stemming from the complex shape of the employed Rothemund triangle. Nevertheless, even under such optimized conditions, the lattices display a considerable number of defects, including grain boundaries, point and line defects, and screw-like dislocations. By monitoring the dynamics of selected lattice defects, we identify mechanisms that limit the obtainable degree of lattice order. Possible routes toward further increasing lattice order by postassembly annealing are discussed.


Asunto(s)
Silicatos de Aluminio/química , ADN , Microscopía de Fuerza Atómica , Nanoestructuras , Conformación de Ácido Nucleico , ADN/química , ADN/ultraestructura , Nanoestructuras/química , Nanoestructuras/ultraestructura
11.
Angew Chem Int Ed Engl ; 57(45): 14873-14877, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30216608

RESUMEN

The rational combination of techniques from the fields of nanotechnology, single molecule detection, and lead discovery could provide elegant solutions to enhance the throughput of drug screening. We have synthesized nanoarrays of small pharmacophores on DNA origami substrates that are displayed either as individual ligands or as fragment pairs and thereby reduced the feature size by several orders of magnitude, as compared with standard microarray techniques. Atomic force microscopy-based single-molecule detection allowed us to distinguish potent protein-ligand interactions from weak binders. Several independent binding events, that is, strong, weak, symmetric bidentate, and asymmetric bidentate binding are directly visualized and evaluated. We apply this method to the discovery of bidentate trypsin binders based on benzamidine paired with aromatic fragments. Pairing of benzamidine with the dye TAMRA results in tenfold enhancement of the trypsin binding yield.


Asunto(s)
ADN/química , Descubrimiento de Drogas/métodos , Nanoestructuras/química , Benzamidinas/química , Benzamidinas/farmacología , Humanos , Ligandos , Microscopía de Fuerza Atómica/métodos , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Unión Proteica , Tripsina/metabolismo
12.
Angew Chem Int Ed Engl ; 57(30): 9470-9474, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29799663

RESUMEN

DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low-Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+ -DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low-micromolar range.


Asunto(s)
ADN/química , Magnesio/química , Nanoestructuras/química , Tampones (Química) , Conformación de Ácido Nucleico , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA