Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(5): e0425522, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38587411

RESUMEN

tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.


Asunto(s)
Candida albicans , Candidiasis , Proteínas Fúngicas , Hifa , ARN de Transferencia , Candida albicans/genética , Candida albicans/patogenicidad , Candida albicans/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Virulencia/genética , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candidiasis/microbiología , Hifa/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Animales , Candida/patogenicidad , Candida/genética , Candida/metabolismo , Interacciones Huésped-Patógeno , Ratones , Células Epiteliales/microbiología
2.
Front Genet ; 11: 856, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014012

RESUMEN

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells.

3.
EMBO J ; 39(19): e105087, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901956

RESUMEN

The chemical modification of tRNA bases by sulfur is crucial to tune translation and to optimize protein synthesis. In eukaryotes, the ubiquitin-related modifier 1 (Urm1) pathway is responsible for the synthesis of 2-thiolated wobble uridine (U34 ). During the key step of the modification cascade, the E1-like activating enzyme ubiquitin-like protein activator 4 (Uba4) first adenylates and thiocarboxylates the C-terminus of its substrate Urm1. Subsequently, activated thiocarboxylated Urm1 (Urm1-COSH) can serve as a sulfur donor for specific tRNA thiolases or participate in ubiquitin-like conjugation reactions. Structural and mechanistic details of Uba4 and Urm1 have remained elusive but are key to understand the evolutionary branch point between ubiquitin-like proteins (UBL) and sulfur-relay systems. Here, we report the crystal structures of full-length Uba4 and its heterodimeric complex with its substrate Urm1. We show how the two domains of Uba4 orchestrate recognition, binding, and thiocarboxylation of the C-terminus of Urm1. Finally, we uncover how the catalytic domains of Uba4 communicate efficiently during the reaction cycle and identify a mechanism that enables Uba4 to protect itself against self-conjugation with its own product, namely activated Urm1-COSH.


Asunto(s)
Nucleotidiltransferasas/química , ARN de Transferencia/química , Azufre/química , Sulfurtransferasas/química , Ubiquitinas/química , Humanos , Nucleotidiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Ubiquitinas/metabolismo
4.
RNA ; 24(10): 1403-1417, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30012570

RESUMEN

Post-transcriptional chemical modifications of (t)RNA molecules are crucial in fundamental biological processes, such as translation. Despite their biological importance and accumulating evidence linking them to various human diseases, technical challenges have limited their detection and accurate quantification. Here, we present a sensitive capillary nanoflow liquid chromatography mass spectrometry (nLC-MS) pipeline for quantitative high-resolution analysis of ribonucleoside modifications from complex biological samples. We evaluated two porous graphitic carbon (PGC) materials and one end-capped C18 reference material as stationary phases for reversed-phase separation. We found that these matrices have complementing retention and separation characteristics, including the capability to separate structural isomers. PGC and C18 matrices yielded excellent signal-to-noise ratios in nLC-MS while differing in the separation capability and sensitivity for various nucleosides. This emphasizes the need for tailored LC-MS setups for optimally detecting as many nucleoside modifications as possible. Detection ranges spanning up to six orders of magnitude enable the analysis of individual ribonucleosides down to femtomol concentrations. Furthermore, normalizing the obtained signal intensities to a stable isotope labeled spike-in enabled direct comparison of ribonucleoside levels between different samples. In conclusion, capillary columns coupled to nLC-MS constitute a powerful and sensitive tool for quantitative analysis of modified ribonucleosides in complex biological samples. This setup will be invaluable for further unraveling the intriguing and multifaceted biological roles of RNA modifications.


Asunto(s)
Cromatografía Liquida , Espectrometría de Masas , Ribonucleósidos/análisis , Ribonucleósidos/química , Cromatografía Liquida/métodos , Grafito/química , Humanos , Espectrometría de Masas/métodos , ARN Bacteriano , ARN de Hongos , ARN de Transferencia/química , Ribonucleósidos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
5.
Nat Genet ; 49(10): 1529-1538, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805828

RESUMEN

Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.


Asunto(s)
Hernia Hiatal/genética , Microcefalia/genética , Complejos Multiproteicos/genética , Mutación , Nefrosis/genética , Animales , Apoptosis/genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Movimiento Celular , Citoesqueleto/ultraestructura , Reparación del ADN/genética , Estrés del Retículo Endoplásmico/genética , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Modelos Moleculares , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/metabolismo , Homeostasis del Telómero/genética , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...