Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 182(4): 1205-18, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462508

RESUMEN

Despite recent advances in understanding the relevance of cell adhesion-related signaling in the pathogenesis of ischemic cardiomyopathy (ICM) in animal models, substantial questions remain unanswered in the human setting. We have previously shown that the neural cell adhesion molecule CD56 [neural cell adhesion molecule (NCAM1)] is specifically overexpressed in ICM; it was the aim of the current study to further elucidate the role of CD56 in the pathogenesis of human ICM. We used quantitative real-time PCR and IHC in human ICM and a rat model of coronary obstruction to demonstrate that CD56(140kD), the only extraneuronally expressed NCAM1 isoform with a cytoplasmic protein domain capable of inducing intracellular signaling, is the only up-regulated CD56 isoform in failing cardiomyocytes in human ICM in vivo. In subsequent analyses of the cellular effects of CD56(140kD) overexpression in the development of ICM using differential whole transcriptome expression analyses and functional in vitro cardiomyocyte cell culture assays, we further show that the up-regulation of CD56(140kD) is associated with profound gene expression changes, increased apoptosis, and reduced Ca(2+) signaling in failing human cardiomyocytes. Because apoptosis and Ca(2+)-related sarcomeric dysfunction are molecular hallmarks of ICM in humans, our results provide strong evidence that CD56(140kD) up-regulation plays a pivotal role in the pathogenesis of ICM and may be a target for future immunotherapeutic strategies in the treatment of this common and often fatal disease.


Asunto(s)
Antígeno CD56/metabolismo , Cardiomiopatías/patología , Isquemia Miocárdica/patología , Animales , Apoptosis , Antígeno CD56/genética , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatías/complicaciones , Cardiomiopatías/genética , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Peso Molecular , Proteínas Mutantes/metabolismo , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Nat Cell Biol ; 12(5): 492-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20364141

RESUMEN

Chromosomal instability (CIN) is a major hallmark of human cancer and might contribute to tumorigenesis. Genes required for the normal progression of mitosis represent potential CIN genes and, as such, are important tumour suppressors. The Chk2 kinase and its downstream targets p53 and Brca1 are tumour suppressors that have been functionally linked to the DNA damage response pathway. Here, we report a function of Chk2, independent of p53 and DNA damage, that is required for proper progression of mitosis, and for the maintenance of chromosomal stability in human somatic cells. Depletion of Chk2 or abrogation of its kinase activity causes abnormal mitotic spindle assembly associated with a delay in mitosis, which promotes the generation of lagging chromosomes, chromosome missegregation and CIN, while still allowing survival and growth. Furthermore, we have identified Brca1 as a mitotic target of the Chk2 kinase in the absence of DNA damage. Accordingly, loss of BRCA1 or its Chk2-mediated phosphorylation leads to spindle formation defects and CIN. Thus, the CHK2-BRCA1 tumour suppressor pathway is required for chromosomal stability, which might contribute to their tumour suppressor function.


Asunto(s)
Proteína BRCA1/fisiología , Inestabilidad Cromosómica , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteína BRCA1/metabolismo , Línea Celular , Quinasa de Punto de Control 2 , Humanos , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Transducción de Señal , Huso Acromático/metabolismo , Huso Acromático/patología
3.
Cancer Res ; 69(9): 3874-83, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19366805

RESUMEN

The mitotic spindle checkpoint represents a signal transduction pathway that prevents the onset of anaphase until all chromosomes are properly aligned on a metaphase plate. Partial inactivation of this checkpoint allows premature separation of sister chromatids and results in aneuploidy, which might contribute to tumorigenesis. Unlike other cell cycle checkpoints, the spindle checkpoint is essential for cell viability, giving rise to the idea that the spindle checkpoint itself might represent a valuable target for anticancer therapy. We used a cell-based screen and identified the indolocarbazole compound Gö6976 as a pharmacologic inhibitor of the spindle checkpoint. Gö6976 potently overrides a spindle checkpoint-mediated mitotic arrest by abrogating the phosphorylation and kinetochore localization of several spindle checkpoint proteins. We identified the Aurora-A and Aurora-B kinases, which have been previously implicated in proper mitotic progression and spindle checkpoint function, as targets for Gö6976. Accordingly, Gö6976 treatment causes severe mitotic abnormalities and chromosome alignment defects, which are not properly detected by the drug-inactivated spindle checkpoint. This results in an aberrant progression of mitosis, leading to apoptosis in various human cancer cell lines, including spindle checkpoint-compromised cancer cells. Thus, our work describes a novel and promising strategy for anticancer treatment that targets the mitotic spindle checkpoint.


Asunto(s)
Carbazoles/farmacología , Neoplasias del Colon/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Huso Acromático/efectos de los fármacos , Apoptosis/efectos de los fármacos , Aurora Quinasa B , Aurora Quinasas , Aberraciones Cromosómicas , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Sinergismo Farmacológico , Células HCT116 , Humanos , Mitosis/efectos de los fármacos , Nocodazol/farmacología , Paclitaxel/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Oncogene ; 24(26): 4301-10, 2005 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-15782113

RESUMEN

The mitotic spindle assembly checkpoint ensures proper chromosome segregation during mitosis by inhibiting the onset of anaphase until all kinetochores are attached to the mitotic spindle and tension across the kinetochores is generated. Here, we report that the stable partial downregulation of the spindle checkpoint gene MAD1, which is observed in human cancer, leads to a functional inactivation of the spindle checkpoint resulting in gross aneuploidy. Interestingly, although Mad1 is thought to act as a kinetochore based activator of Mad2 during checkpoint activation, we show that normal levels of Mad2, but not of Mad1, are required for preventing premature sister chromatid separation and for maintaining the timing of an undisturbed mitosis, suggesting a Mad1 independent function of Mad2 that operates independent of its checkpoint function. Most significantly, a partial repression of either MAD1 or MAD2 confers resistance to nocodazole, a drug that inhibits microtubule attachment. In contrast, sensitivity to clinically relevant drugs like taxol or monastrol that inhibit the generation of tension across kinetochores is not modulated by partial downregulation of MAD1, suggesting a functional bifurcation of spindle checkpoint dependent apoptotic pathways.


Asunto(s)
Aneuploidia , Carcinoma/genética , Carcinoma/patología , Proteínas de Ciclo Celular/biosíntesis , Ciclo Celular/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Mitosis , Proteínas Nucleares/biosíntesis , Huso Acromático , Apoptosis , Proteínas de Ciclo Celular/genética , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Cinetocoros , Proteínas Nucleares/genética
5.
J Biol Chem ; 280(6): 4025-8, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15611124

RESUMEN

A novel strategy in cancer therapy is the induction of mitotic cell death by the pharmacological abrogation of cell cycle checkpoints. UCN-01 is such a compound that overrides the G2 cell cycle arrest induced by DNA damage and forces cells into a deleterious mitosis. The molecular pathways leading to mitotic cell death are largely unknown although recent evidence indicates that mitotic cell death represents a special case of apoptosis. Here, we demonstrate that the mitotic spindle checkpoint is activated upon chemotherapeutic treatment with topoisomerase II poisons and UCN-01. Cells that are forced to enter mitosis in the presence of topoisomerase inhibition arrest transiently in a prometaphase like state. By using a novel pharmacological inhibitor of the spindle checkpoint and spindle checkpoint-deficient cells we show that the spindle checkpoint function is required for the mitotic arrest and, most importantly, for efficient induction of mitotic cell death. Thus, our results demonstrate that the mitotic spindle checkpoint is an important determinant for the outcome of a chemotherapy based on the induction of mitotic cell death. Its frequent inactivation in human cancer might contribute to the observed resistance of tumor cells to these chemotherapeutic drugs.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Huso Acromático , Estaurosporina/análogos & derivados , Inhibidores de Topoisomerasa , Apoptosis , Western Blotting , Muerte Celular , Línea Celular Tumoral , Separación Celular , Daño del ADN , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Fase G2 , Humanos , Mitosis , Nocodazol/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Estaurosporina/farmacología , Factores de Tiempo , Transgenes
6.
Oncogene ; 23(41): 6845-53, 2004 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15286707

RESUMEN

Treatment of cells with microtubule inhibitors results in activation of the mitotic spindle assembly checkpoint, leading to mitotic arrest before anaphase. Upon prolonged treatment, however, cells can adapt and exit mitosis aberrantly, resulting in the occurrence of tetraploid cells in G1. Those cells subsequently arrest in postmitotic G1 due to the activation of a p53-dependent G1 checkpoint. Failure of the G1 checkpoint leads to endoreduplication and further polyploidization. Using HCT116 and isogenic p53-deficient or spindle checkpoint compromised derivatives, we show here that not only p53 but also a functional spindle assembly checkpoint is required for postmitotic G1 checkpoint function. During transient mitotic arrest, p53 stabilization and activation is triggered by a pathway independent of ATM/ATR, Chk1 and Chk2. We further show that a prolonged spindle checkpoint-mediated mitotic arrest is required for proper postmitotic G1 checkpoint function. In addition, we demonstrate that polyploid cells are inhibited to re-enter mitosis by an additional checkpoint acting in G2. Thus, during a normal cell cycle, polyploidization and subsequent aneuploidization is prevented by the function of the mitotic spindle checkpoint, a p53-dependent G1 checkpoint and an additional G2 checkpoint.


Asunto(s)
Poliploidía , Huso Acromático/fisiología , Proteína p53 Supresora de Tumor/fisiología , Células Cultivadas , Daño del ADN , Fase G1 , Fase G2 , Humanos , Mitosis
7.
Biochem J ; 382(Pt 2): 471-9, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15167811

RESUMEN

The key insulin-regulated gluconeogenic enzyme G6Pase (glucose-6-phosphatase) has an important function in the control of hepatic glucose production. Here we examined the inhibition of G6Pase gene transcription by TNF (tumour necrosis factor) in H4IIE hepatoma cells. TNF decreased dexamethasone/dibtuyryl cAMP-induced G6Pase mRNA levels. TNFalpha, but not insulin, led to rapid activation of NFkappaB (nuclear factor kappaB). The adenoviral overexpression of a dominant negative mutant of IkappaBalpha (inhibitor of NFkappaB alpha) prevented the suppression of G6Pase expression by TNFalpha, but did not affect that by insulin. The regulation of G6Pase by TNF was not mediated by activation of the phosphoinositide 3-kinase/protein kinase B pathway, extracellular-signal-regulated protein kinase or p38 mitogen-activated protein kinase. Reporter gene assays demonstrated a concentration-dependent down-regulation of G6Pase promoter activity by the transient overexpression of NFkappaB. Although two binding sites for NFkappaB were identified within the G6Pase promoter, neither of these sites, nor the insulin response unit or binding sites for Sp proteins, was necessary for the regulation of G6Pase promoter activity by TNFalpha. In conclusion, the data indicate that the activation of NFkappaB is sufficient to suppress G6Pase gene expression, and is required for the regulation by TNFalpha, but not by insulin. We propose that NFkappaB does not act by binding directly to the G6Pase promoter.


Asunto(s)
Glucosa-6-Fosfatasa/antagonistas & inhibidores , Glucosa-6-Fosfatasa/genética , FN-kappa B/fisiología , Factores de Necrosis Tumoral/fisiología , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Insulina/fisiología , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Regiones Promotoras Genéticas/genética , Ratas , Elementos de Respuesta/genética , Transcripción Genética/fisiología , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA