Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5224, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890293

RESUMEN

Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.


Asunto(s)
Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Estrés Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Sequías , Phytophthora infestans , Plantas Modificadas Genéticamente , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Eliminación de Gen , Proteómica
2.
Trends Biotechnol ; 41(8): 1027-1040, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37419837

RESUMEN

Significant shares of harvests are lost to pests and diseases, therefore, minimizing these losses could solve part of the supply constraints to feed the world. Cisgenesis is defined as the insertion of genetic material into a recipient organism from a donor that is sexually compatible. Here, we review (i) conventional plant breeding, (ii) cisgenesis, (iii) current pesticide-based disease management, (iv) potential economic implications of cultivating cisgenic crops with durable disease resistances, and (v) potential environmental implications of cultivating such crops; focusing mostly on potatoes, but also apples, with resistances to Phytophthora infestans and Venturia inaequalis, respectively. Adopting cisgenic varieties could provide benefits to farmers and to the environment through lower pesticide use, thus contributing to the European Green Deal target.


Asunto(s)
Resistencia a la Enfermedad , Plaguicidas , Plantas Modificadas Genéticamente/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Productos Agrícolas/genética
3.
GM Crops Food ; 13(1): 290-298, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36263889

RESUMEN

Late blight, caused by Phytophthora infestans, is the most devastating disease in potato production. Here, we show full late blight resistance in a location with a genetically diverse pathogen population with the use of GM potato stacked with three resistance (R) genes over three seasons. In addition, using this field trials, we demonstrate that in-the-field intervention among consumers led to change for more favorable attitude generally toward GM crops.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Phytophthora infestans/genética , Actitud
5.
Front Genome Ed ; 4: 780004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845346

RESUMEN

Schemes for efficient regenerationand recovery of shoots from in vitro tissues or single cells, such as protoplasts, are only available for limited numbers of plant species and genotypes and are crucial for establishing gene editing tools on a broader scale in agriculture and plant biology. Growth conditions, including hormone and nutrient composition as well as light regimes in key steps of known regeneration protocols, display significant variations, even between the genotypes within the same species, e.g., potato (Solanum tuberosum). As fresh plant material is a prerequisite for successful shoot regeneration, the plant material often needs to be refreshed for optimizing the growth and physiological state prior to genetic transformation. Utilization of protoplasts has become a more important approach for obtaining transgene-free edited plants by genome editing, CRISPR/Cas9. In this approach, callus formation from protoplasts is induced by one set of hormones, followed by organogenesis, i.e., shoot formation, which is induced by a second set of hormones. The requirements on culture conditions at these key steps vary considerably between the species and genotypes, which often require quantitative adjustments of medium compositions. In this mini-review, we outline the protocols and notes for clonal regeneration and cultivation from single cells, particularly protoplasts in potato and rapeseed. We focus mainly on different hormone treatment schemes and highlight the importance of medium compositions, e.g., sugar, nutrient, and light regimes as well as culture durations at the key regeneration steps. We believe that this review would provide important information and hints for establishing efficient regeneration strategies from other closely related and broad-leaved plant species in general.

6.
Methods Mol Biol ; 2354: 111-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34448157

RESUMEN

Gene technology and editing are not only biotechnological techniques for creating new crop varieties but are also tools for researchers to discover gene functions. Field trial following laboratory experiments is an important step in order to evaluate new functions since many phenotypes, and combinations thereof, are difficult to detect in controlled environments and molecular analyses are nowadays possible to do in the field. Here we describe a standard protocol for creating new potato lines and producing seed tubers for field trials within 1 year.


Asunto(s)
Solanum tuberosum , Tubérculos de la Planta , Plantas Modificadas Genéticamente , Solanum tuberosum/genética
7.
Sci Rep ; 11(1): 4487, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627728

RESUMEN

The use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


Asunto(s)
Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Mutación/genética , Solanum tuberosum/genética , Citrus/genética , Edición Génica/métodos , Solanum lycopersicum/genética , Oryza/genética , Fenotipo , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética
8.
Front Genome Ed ; 3: 795644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35128523

RESUMEN

Potato, Solanum tuberosum is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.3-2.8 higher SNP prevalence when compared to the heterozygous diploid RH genome sequence as expected for a tetraploid compared to a diploid. This complicates guide RNA (gRNA) and diagnostic PCR designs. At the same time, high editing efficiencies at the cell pool (protoplast) level are pivotal for achieving full allelic knock-out in tetraploids. Furthermore, high editing efficiencies reduce the downstream cumbersome and delicate ex-plant regeneration. Here, CRISPR/Cas ribonucleoprotein particles (RNPs) were delivered transiently to protoplasts by polyethylene glycol (PEG) mediated transformation. For each of GWD1 and the DMR6-1, 6-10 gRNAs were designed to target regions comprising the 5' and the 3' end of the two genes. Similar to other studies including several organisms, editing efficiency of the individual RNPs varied significantly, and some generated specific indel patterns. RNP's targeting the 5' end of GWD1 yielded significantly higher editing efficiency as compared to targeting the 3' end. For DMR6-1, such an effect was not seen. Simultaneously targeting each of the two target regions with two RNPs (multiplexing) yielded a clear positive synergistic effect on the total editing when targeting the 3' end of the GWD1 gene only. Multiplexing of the two genes, residing on different chromosomes, yielded no or a slightly negative effect on editing from the single or combined gRNA/RNPs. These initial findings may instigate much larger studies needed for facilitating and optimizing precision breeding in plants.

9.
Plants (Basel) ; 9(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486039

RESUMEN

Potato (Solanum tuberosum) is among the best producers of edible biomass in terms of yield per hectare and a variety of different regional cultivars are used as a staple commodity in many countries. However, this crop is attacked by several diseases, with the worst being the late blight disease caused by Phytophthora infestans. Stacking of resistance (R) genes from wild Solanum relatives are interesting prospects for the sustainable control of late blight. Therefore, we optimized methods for the efficient generation and screening of R-gene-containing transformants in tetraploid and diploid hybrid potato genotypes. Using these methods, a high transformation efficiency was achieved for the transformation of tetraploid and diploid potato lines with a triple resistance (3R) gene construct. Transformation efficiencies were improved by optimizing several factors affecting regeneration, including the quality of the starting plant material, and the composition of the plant growth regulators used during selective regeneration. A refreshment protocol was designed to alleviate in vitro related stress in stock plants, which significantly improved the growth vigor and resulted in a 4- to 10-fold increase in transformation efficiency. Furthermore, long-term exposure to exogenous Indole-3-butyric acid that is usually used for the initiation of roots in vitro, was found to cause aberrant morphological phenotypes in potato.

10.
Microbiologyopen ; 5(3): 512-26, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27060604

RESUMEN

Burkholderia is an important genus encompassing a variety of species, including pathogenic strains as well as strains that promote plant growth. We have carried out a global strategy, which combined two complementary approaches. The first one is genome guided with deep analysis of genome sequences and the second one is assay guided with experiments to support the predictions obtained in silico. This efficient screening for new secondary metabolites, performed on 48 gapless genomes of Burkholderia species, revealed a total of 161 clusters containing nonribosomal peptide synthetases (NRPSs), with the potential to synthesize at least 11 novel products. Most of them are siderophores or lipopeptides, two classes of products with potential application in biocontrol. The strategy led to the identification, for the first time, of the cluster for cepaciachelin biosynthesis in the genome of Burkholderia ambifaria AMMD and a cluster corresponding to a new malleobactin-like siderophore, called phymabactin, was identified in Burkholderia phymatum STM815 genome. In both cases, the siderophore was produced when the strain was grown in iron-limited conditions. Elsewhere, the cluster for the antifungal burkholdin was detected in the genome of B. ambifaria AMMD and also Burkholderia sp. KJ006. Burkholderia pseudomallei strains harbor the genetic potential to produce a novel lipopeptide called burkhomycin, containing a peptidyl moiety of 12 monomers. A mixture of lipopeptides produced by Burkholderia rhizoxinica lowered the surface tension of the supernatant from 70 to 27 mN·m(-1) . The production of nonribosomal secondary metabolites seems related to the three phylogenetic groups obtained from 16S rRNA sequences. Moreover, the genome-mining approach gave new insights into the nonribosomal synthesis exemplified by the identification of dual C/E domains in lipopeptide NRPSs, up to now essentially found in Pseudomonas strains.


Asunto(s)
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Genoma Bacteriano/genética , Lipopéptidos/biosíntesis , Péptido Sintasas/metabolismo , Sideróforos/biosíntesis , Antifúngicos/metabolismo , Proteínas Bacterianas/biosíntesis , Secuencia de Bases , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Lipopéptidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sideróforos/química
11.
Environ Microbiol Rep ; 7(5): 774-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26085277

RESUMEN

We investigated the role of phenazines and cyclic lipopeptides (CLPs) (orfamides and sessilins), antagonistic metabolites produced by Pseudomonas sp. CMR12a, in the biological control of damping-off disease on Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani AG 2-1 and root rot disease on bean (Phaseolus vulgaris L.) caused by R. solani AG 4-HGI. A Pseudomonas mutant that only produced phenazines suppressed damping-off disease on Chinese cabbage to the same extent as CMR12a, while its efficacy to reduce root rot on bean was strongly impaired. In both pathosystems, the phenazine mutant that produced both CLPs was equally effective, but mutants that produced only one CLP lost biocontrol activity. In vitro microscopic assays revealed that mutants that only produced sessilins or orfamides inhibited mycelial growth of R. solani when applied together, while they were ineffective on their own. Phenazine-1-carboxamide suppressed mycelial growth of R. solani AG 2-1 but had no effect on AG 4-HGI. Orfamide B suppressed mycelial growth of both R. solani anastomosis groups in a dose-dependent way. Our results point to an additive interaction between both CLPs. Moreover, phenazines alone are sufficient to suppress Rhizoctonia disease on Chinese cabbage, while they need to work in tandem with the CLPs on bean.


Asunto(s)
Antibiosis , Antifúngicos/metabolismo , Péptidos Cíclicos/metabolismo , Fenazinas/metabolismo , Enfermedades de las Plantas/prevención & control , Pseudomonas/fisiología , Rhizoctonia/crecimiento & desarrollo , Brassica/microbiología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Lipopéptidos/metabolismo , Control Biológico de Vectores/métodos , Phaseolus/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/metabolismo , Rhizoctonia/efectos de los fármacos
12.
Environ Microbiol ; 16(7): 2282-300, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24673852

RESUMEN

Pseudomonas CMR12a is a biocontrol strain that produces phenazine antibiotics and as yet uncharacterized cyclic lipopeptides (CLPs). The CLPs of CMR12a were studied by chemical structure analysis and in silico analysis of the gene clusters encoding the non-ribosomal peptide synthetases responsible for CLP biosynthesis. CMR12a produces two different classes of CLPs: orfamides B, D and E, whereby the latter two represent new derivatives of the orfamide family, and sessilins A-C. The orfamides are made up of a 10 amino acid peptide coupled to a ß-hydroxydodecanoyl or ß-hydroxytetradecanoyl fatty acid moiety, and are related to orfamides produced by biocontrol strain Pseudomonas protegens Pf-5. The sessilins consist of an 18-amino acid peptide linked to a ß-hydroxyoctanoyl fatty acid and differ in one amino acid from tolaasins, toxins produced by the mushroom pathogen Pseudomonas tolaasii. CLP biosynthesis mutants were constructed and tested for biofilm formation and swarming motility. Orfamides appeared indispensable for swarming while sessilin mutants showed reduced biofilm formation, but enhanced swarming motility. The interplay between the two classes of CLPs fine tunes these processes. The presence of sessilins in wild type CMR12a interferes with swarming by hampering the release of orfamides and by co-precipitating orfamides to form a white line in agar.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Lipopéptidos/biosíntesis , Péptido Sintasas/genética , Péptidos Cíclicos/biosíntesis , Pseudomonas/genética , Agar , Proteínas Bacterianas/química , Agentes de Control Biológico , Depsipéptidos/química , Lipopéptidos/genética , Movimiento , Familia de Multigenes , Mutación , Péptido Sintasas/metabolismo , Péptidos Cíclicos/genética , Fenazinas/metabolismo , Pseudomonas/metabolismo
13.
Mol Plant Pathol ; 13(8): 816-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22375884

RESUMEN

Iron is an essential element for most living organisms, and pathogens are likely to compete with their hosts for the acquisition of this element. The bacterial plant pathogen Dickeya dadantii has been shown to require its siderophore-mediated iron uptake system for systemic disease progression on several host plants, including Arabidopsis thaliana. In this study, we investigated the effect of the iron status of Arabidopsis on the severity of disease caused by D. dadantii. We showed that symptom severity, bacterial fitness and the expression of bacterial pectate lyase-encoding genes were reduced in iron-deficient plants. Reduced symptoms correlated with enhanced expression of the salicylic acid defence plant marker gene PR1. However, levels of the ferritin coding transcript AtFER1, callose deposition and production of reactive oxygen species were reduced in iron-deficient infected plants, ruling out the involvement of these defences in the limitation of disease caused by D. dadantii. Disease reduction in iron-starved plants was also observed with the necrotrophic fungus Botrytis cinerea. Our data demonstrate that the plant nutritional iron status can control the outcome of an infection by acting on both the pathogen's virulence and the host's defence. In addition, iron nutrition strongly affects the disease caused by two soft rot-causing plant pathogens with a large host range. Thus, it may be of interest to take into account the plant iron status when there is a need to control disease without compromising crop quality and yield in economically important plant species.


Asunto(s)
Arabidopsis/inmunología , Botrytis/patogenicidad , Enterobacteriaceae/patogenicidad , Deficiencias de Hierro , Arabidopsis/genética , Arabidopsis/microbiología , Genes de Plantas , Polisacárido Liasas/genética , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...