Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(3): 168433, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38182104

RESUMEN

The ligand-regulated PAS domains are one of the most diverse signal-integrating domains found in proteins from prokaryotes to humans. By biochemically connecting cellular processes with their environment, PAS domains facilitate an appropriate cellular response. PAS domain-containing Kinase (PASK) is an evolutionarily conserved protein kinase that plays important signaling roles in mammalian stem cells to establish stem cell fate. We have shown that the nuclear translocation of PASK is stimulated by differentiation signaling cues in muscle stem cells. However, the mechanistic basis of the regulation of PASK nucleo-cytoplasmic translocation remains unknown. Here, we show that the PAS-A domain of PASK contains a putative monopartite nuclear localization sequence (NLS) motif. This NLS is inhibited in cells through intramolecular association with a short linear motif, termed the PAS Interacting Motif (PIM), found upstream of the kinase domain. This interaction serves to retain PASK in the cytosol in the absence of signaling cues. Consistent with that, we show that metabolic inputs induce PASK nuclear import, likely by disrupting this association. We suggest that a route for such linkage may occur through the PAS-A ligand binding cavity. We show that PIM recruitment and artificial ligand binding to the PAS-A domain occur at neighboring locations that could facilitate metabolic control of the PAS-PIM interaction. Thus, the intramolecular interaction in PASK integrates metabolic signaling cues for nuclear translocation and could be targeted to control the balance between self-renewal and differentiation in stem cells.


Asunto(s)
Señales de Localización Nuclear , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Transporte Activo de Núcleo Celular , Diferenciación Celular , Ligandos , Fosforilación , Transducción de Señal , Señales de Localización Nuclear/química , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química
2.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37732199

RESUMEN

The ligand-regulated PAS domains are one of the most diverse signal-integrating domains found in proteins from prokaryotes to humans. By biochemically connecting cellular processes with their environment, PAS domains facilitate an appropriate cellular response. PAS domain-containing Kinase (PASK) is an evolutionarily conserved protein kinase that plays important signaling roles in mammalian stem cells to establish stem cell fate. We have shown that the nuclear translocation of PASK is stimulated by differentiation signaling cues in muscle stem cells. However, the mechanistic basis of the regulation of PASK nucleo-cytoplasmic translocation remains unknown. Here, we show that the PAS-A domain of PASK contains a putative monopartite nuclear localization sequence (NLS) motif. This NLS is inhibited in cells via intramolecular association with a short linear motif, termed the PAS Interacting Motif (PIM), found upstream of the kinase domain. The interaction between the PAS-A domain and PIM is evolutionarily conserved and serves to retain PASK in the cytosol in the absence of signaling cues. Consistent with that, we show that metabolic inputs induce PASK nuclear import, likely by disrupting the PAS-A: PIM association. We suggest that a route for such linkage may occur through the PAS-A ligand binding cavity. We show that PIM recruitment and artificial ligand binding to the PAS-A domain occur at neighboring locations that could facilitate metabolic control of the PAS-PIM interaction. Thus, the PAS-A domain of PASK integrates metabolic signaling cues for nuclear translocation and could be targeted to control the balance between self-renewal and differentiation in stem cells.

3.
Cells ; 12(13)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37443785

RESUMEN

Tissue regeneration is a complex molecular and biochemical symphony. Signaling pathways establish the rhythmic proliferation and differentiation cadence of participating cells to repair the damaged tissues and repopulate the tissue-resident stem cells. Sensory proteins form a critical bridge between the environment and cellular response machinery, enabling precise spatiotemporal control of stem cell fate. Of many sensory modules found in proteins from prokaryotes to mammals, Per-Arnt-Sim (PAS) domains are one of the most ancient and found in the most diverse physiological context. In metazoa, PAS domains are found in many transcription factors and ion channels; however, PAS domain-containing Kinase (PASK) is the only metazoan kinase where the PAS sensory domain is connected to a signaling kinase domain. PASK is predominantly expressed in undifferentiated, self-renewing embryonic and adult stem cells, and its expression is rapidly lost upon differentiation, resulting in its nearly complete absence from the adult mammalian tissues. Thus, PASK is expressed within a narrow but critical temporal window when stem cell fate is established. In this review, we discuss the emerging insight into the sensory and signaling functions of PASK as an integrator of metabolic and nutrient signaling information that serves to balance self-renewal and differentiation programs during mammalian tissue regeneration.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Células Madre , Animales , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Mamíferos/metabolismo
4.
Elife ; 122023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052079

RESUMEN

Quiescent stem cells are activated in response to a mechanical or chemical injury to their tissue niche. Activated cells rapidly generate a heterogeneous progenitor population that regenerates the damaged tissues. While the transcriptional cadence that generates heterogeneity is known, the metabolic pathways influencing the transcriptional machinery to establish a heterogeneous progenitor population remains unclear. Here, we describe a novel pathway downstream of mitochondrial glutamine metabolism that confers stem cell heterogeneity and establishes differentiation competence by countering post-mitotic self-renewal machinery. We discovered that mitochondrial glutamine metabolism induces CBP/EP300-dependent acetylation of stem cell-specific kinase, PAS domain-containing kinase (PASK), resulting in its release from cytoplasmic granules and subsequent nuclear migration. In the nucleus, PASK catalytically outcompetes mitotic WDR5-anaphase-promoting complex/cyclosome (APC/C) interaction resulting in the loss of post-mitotic Pax7 expression and exit from self-renewal. In concordance with these findings, genetic or pharmacological inhibition of PASK or glutamine metabolism upregulated Pax7 expression, reduced stem cell heterogeneity, and blocked myogenesis in vitro and muscle regeneration in mice. These results explain a mechanism whereby stem cells co-opt the proliferative functions of glutamine metabolism to generate transcriptional heterogeneity and establish differentiation competence by countering the mitotic self-renewal network via nuclear PASK.


Asunto(s)
Glutamina , Células Madre , Animales , Ratones , Diferenciación Celular/fisiología , Células Cultivadas , Metabolismo Energético , Células Madre/fisiología
5.
Proc Natl Acad Sci U S A ; 116(21): 10382-10391, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31072927

RESUMEN

During skeletal muscle regeneration, muscle stem cells (MuSCs) respond to multiple signaling inputs that converge onto mammalian target of rapamycin complex 1 (mTORC1) signaling pathways. mTOR function is essential for establishment of the differentiation-committed progenitors (early stage of differentiation, marked by the induction of myogenin expression), myotube fusion, and, ultimately, hypertrophy (later stage of differentiation). While a major mTORC1 substrate, p70S6K, is required for myotube fusion and hypertrophy, an mTORC1 effector for the induction of myogenin expression remains unclear. Here, we identified Per-Arnt-Sim domain kinase (PASK) as a downstream phosphorylation target of mTORC1 in MuSCs during differentiation. We have recently shown that the PASK phosphorylates Wdr5 to stimulate MuSC differentiation by epigenetically activating the myogenin promoter. We show that phosphorylation of PASK by mTORC1 is required for the activation of myogenin transcription, exit from self-renewal, and induction of the myogenesis program. Our studies reveal that mTORC1-PASK signaling is required for the rise of myogenin-positive committed myoblasts (early stage of myogenesis), whereas mTORC1-S6K signaling is required for myoblast fusion (later stage of myogenesis). Thus, our discoveries allow molecular dissection of mTOR functions during different stages of the myogenesis program driven by two different substrates.


Asunto(s)
Diferenciación Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Comunicación Celular/fisiología , Células Cultivadas , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Miogenina/metabolismo , Fosforilación/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal/fisiología
6.
Elife ; 52016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27661449

RESUMEN

PAS domain containing protein kinase (Pask) is an evolutionarily conserved protein kinase implicated in energy homeostasis and metabolic regulation across eukaryotic species. We now describe an unexpected role of Pask in promoting the differentiation of myogenic progenitor cells, embryonic stem cells and adipogenic progenitor cells. This function of Pask is dependent upon its ability to phosphorylate Wdr5, a member of several protein complexes including those that catalyze histone H3 Lysine 4 trimethylation (H3K4me3) during transcriptional activation. Our findings suggest that, during myoblast differentiation, Pask stimulates the conversion of repressive H3K4me1 to activating H3K4me3 marks on the promoter of the differentiation gene myogenin (Myog) via Wdr5 phosphorylation. This enhances accessibility of the MyoD transcription factor and enables transcriptional activation of the Myog promoter to initiate muscle differentiation. Thus, as an upstream kinase of Wdr5, Pask integrates signaling cues with the transcriptional network to regulate the differentiation of progenitor cells.


Asunto(s)
Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Desarrollo de Músculos/fisiología , Músculos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Musculares/fisiología , Músculo Esquelético , Músculos/lesiones , Proteína MioD/metabolismo , Mioblastos/patología , Miogenina/genética , Miogenina/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Células Madre , Activación Transcripcional
7.
Cell Rep ; 8(1): 242-55, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25001282

RESUMEN

Elevated hepatic synthesis of fatty acids and triglycerides, driven by hyperactivation of the SREBP-1c transcription factor, has been implicated as a causal feature of metabolic syndrome. SREBP-1c activation requires the proteolytic maturation of the endoplasmic-reticulum-bound precursor to the active, nuclear transcription factor, which is stimulated by feeding and insulin signaling. Here, we show that feeding and insulin stimulate the hepatic expression of PASK. We also demonstrate, using genetic and pharmacological approaches, that PASK is required for the proteolytic maturation of SREBP-1c in cultured cells and in the mouse and rat liver. Inhibition of PASK improves lipid and glucose metabolism in dietary animal models of obesity and dyslipidemia. Administration of a PASK inhibitor decreases hepatic expression of lipogenic SREBP-1c target genes, decreases serum triglycerides, and partially reverses insulin resistance. While the signaling network that controls SREBP-1c activation is complex, we propose that PASK is an important component with therapeutic potential.


Asunto(s)
Dislipidemias/metabolismo , Lipogénesis , Obesidad/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Células Cultivadas , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Sprague-Dawley
8.
Sci Signal ; 5(249): ra80, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23131847

RESUMEN

Enhanced activation of phosphoinositide 3-kinase (PI3K) is a hallmark of many human tumors because it promotes cell proliferation and survival through several mechanisms. One of these mechanisms is the phosphorylation of the serine and threonine kinase Akt at the cytosolic side of the plasma membrane by phosphoinositide-dependent protein kinase 1 (PDK1), which is recruited and activated by binding to the phosphoinositides produced by PI3K. We previously demonstrated increased nuclear accumulation of PDK1 in cells with enhanced PI3K activity. We report that nuclear PDK1 promoted cell proliferation by suppressing FOXO3A-dependent transcription of the gene encoding p27Kip1 (an inhibitor of cell cycle progression), whereas it enhanced cell survival by inhibiting the activation of c-Jun amino-terminal kinase. Cells with nuclear-localized PDK1 showed anchorage-independent growth, and when injected into mice, these cells induced the formation of solid tumors. In human prostate tumors, cytoplasmic localization of PDK1 correlated only with early-stage, low-risk tumors, whereas nuclear PDK1 localization correlated with high-risk tumors. Together, our findings suggest a role for nuclear-translocated PDK1 in oncogenic cellular transformation and tumor progression in mice and humans.


Asunto(s)
Apoptosis , Núcleo Celular/enzimología , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Fosfoglicerato Quinasa/metabolismo , Neoplasias de la Próstata/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Supervivencia Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoglicerato Quinasa/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
9.
J Biol Chem ; 285(52): 41034-43, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20943661

RESUMEN

Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Activación Enzimática/fisiología , Humanos , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
10.
J Biol Chem ; 284(46): 31608-15, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19661063

RESUMEN

APPL1 is a newly identified adiponectin receptor-binding protein that positively mediates adiponectin signaling in cells. Here we report that APPL2, an isoform of APPL1 that forms a dimer with APPL1, can interacts with both AdipoR1 and AdipoR2 and acts as a negative regulator of adiponectin signaling in muscle cells. Overexpression of APPL2 inhibits the interaction between APPL1 and AdipoR1, leading to down-regulation of adiponectin signaling in C2C12 myotubes. In contrast, suppressing APPL2 expression by RNAi significantly enhances adiponectin-stimulated glucose uptake and fatty acid oxidation. In addition to targeting directly to and competing with APPL1 in binding with the adiponectin receptors, APPL2 also suppresses adiponectin and insulin signaling by sequestrating APPL1 from these two pathways. In addition to adiponectin, metformin also induces APPL1-APPL2 dissociation. Taken together, our results reveal that APPL isoforms function as an integrated Yin-Yang regulator of adiponectin signaling and mediate the cross-talk between adiponectin and insulin signaling pathways in muscle cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adiponectina/farmacología , Mioblastos/efectos de los fármacos , Receptores de Adiponectina/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Metformina/farmacología , Ratones , Mioblastos/metabolismo , Isoformas de Proteínas , Transporte de Proteínas , ARN Interferente Pequeño/farmacología , Conejos , Receptores de Adiponectina/genética , Fracciones Subcelulares
11.
Mol Cell Biol ; 27(18): 6497-505, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17620412

RESUMEN

Grb10 is a pleckstrin homology and Src homology 2 domain-containing protein that interacts with a number of phosphorylated receptor tyrosine kinases, including the insulin receptor. In mice, Grb10 gene expression is imprinted with maternal expression in all tissues except the brain. While the interaction between Grb10 and the insulin receptor has been extensively investigated in cultured cells, whether this adaptor protein plays a positive or negative role in insulin signaling and action remains controversial. In order to investigate the in vivo role of Grb10 in insulin signaling and action in the periphery, we generated Grb10 knockout mice by the gene trap technique and analyzed mice with maternal inheritance of the knockout allele. Disruption of Grb10 gene expression in peripheral tissues had no significant effect on fasting glucose and insulin levels. On the other hand, peripheral-tissue-specific knockout of Grb10 led to significant overgrowth of the mice, consistent with a role for endogenous Grb10 as a growth suppressor. Loss of Grb10 expression in insulin target tissues, such as skeletal muscle and fat, resulted in enhanced insulin-stimulated Akt and mitogen-activated protein kinase phosphorylation. Hyperinsulinemic-euglycemic clamp studies revealed that disruption of Grb10 gene expression in peripheral tissues led to increased insulin sensitivity. Taken together, our results provide strong evidence that Grb10 is a negative regulator of insulin signaling and action in vivo.


Asunto(s)
Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Insulina/metabolismo , Transducción de Señal , Animales , Glucemia/análisis , Tamaño Corporal/genética , Peso Corporal/genética , Cruzamientos Genéticos , Células Madre Embrionarias/citología , Ayuno , Femenino , Proteína Adaptadora GRB10/deficiencia , Insulina/sangre , Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Microinyecciones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sensibilidad y Especificidad , Trofoblastos/metabolismo
12.
J Biol Chem ; 281(31): 21588-21593, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16751192

RESUMEN

3-Phosphoinositide-dependent protein kinase-1 (PDK1) mediates phosphorylation and activation of members of the AGC protein kinase family and plays an essential role in insulin signaling and action. However, whether and how PDK1 activity is regulated in cells remains largely uncharacterized. In the present study, we show that PDK1 undergoes insulin-stimulated and phosphatidylinositol 3-kinase-dependent phosphorylation at Ser244 in the activation loop and at a novel site: Ser163 in the hinge region between the two lobes of the kinase domain. Sequence alignment studies revealed that the residue corresponding to Ser163 of PDK1 in all other AGC kinases is glutamate, suggesting that a negative charge at this site may be important for PDK1 function. Replacing Ser163 with a negatively charged residue, glutamate, led to a 2-fold increase in PDK1 activity. Molecular modeling studies suggested that phosphorylated Ser163 may form additional hydrogen bonds with Tyr149 and Gln223. In support of this, mutation of Tyr149 to Ala is sufficient to reduce PDK1 activity. Taken together, our results suggest that PDK1 phosphorylation of Ser163 may provide a mechanism to fine-tune PDK1 activity and function in cells.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Sustitución de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Humanos , Enlace de Hidrógeno , Insulina/farmacología , Ratones , Modelos Moleculares , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Alineación de Secuencia , Transfección
13.
Nat Cell Biol ; 8(5): 516-23, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16622416

RESUMEN

Adiponectin, also known as Acrp30, is an adipose tissue-derived hormone with anti-atherogenic, anti-diabetic and insulin sensitizing properties. Two seven-transmembrane domain-containing proteins, AdipoR1 and AdipoR2, have recently been identified as adiponectin receptors, yet signalling events downstream of these receptors remain poorly defined. By using the cytoplasmic domain of AdipoR1 as bait, we screened a yeast two-hybrid cDNA library derived from human fetal brain. This screening led to the identification of a phosphotyrosine binding domain and a pleckstrin homology domain-containing adaptor protein, APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding (PTB) domain and leucine zipper motif). APPL1 interacts with adiponectin receptors in mammalian cells and the interaction is stimulated by adiponectin. Overexpression of APPL1 increases, and suppression of APPL1 level reduces, adiponectin signalling and adiponectin-mediated downstream events (such as lipid oxidation, glucose uptake and the membrane translocation of glucose transport 4 (GLUT4)). Adiponectin stimulates the interaction between APPL1 and Rab5 (a small GTPase) interaction, leading to increased GLUT4 membrane translocation. APPL1 also acts as a critical regulator of the crosstalk between adiponectin signalling and insulin signalling pathways. These results demonstrate a key function for APPL1 in adiponectin signalling and provide a molecular mechanism for the insulin sensitizing function of adiponectin.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adiponectina/metabolismo , Proteínas Portadoras/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Adiponectina/farmacología , Animales , Células CHO , Proteínas Portadoras/química , Células Cultivadas , Cricetinae , Cricetulus , Perfilación de la Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/farmacología , Ratones , Datos de Secuencia Molecular , Mioblastos/citología , Mioblastos/efectos de los fármacos , Unión Proteica , Receptores de Adiponectina , Proteínas de Unión al GTP rab5/metabolismo
14.
J Cell Biochem ; 96(6): 1157-62, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16187290

RESUMEN

Activation of cytosolic phosphoinositide-3 kinase (PI-3K) signaling pathway has been well established to regulate gene expression, cell cycle, and survival by feeding signals to the nucleus. In addition, strong evidences accumulated over the past few years indicate the presence of an autonomous inositol lipid metabolism and PI-3K signaling within the nucleus. Much less, however, is known about the role and regulation of this nuclear PI-3K pathway. Components of the PI-3K signaling pathway, including PI 3-kinase and its downstream kinase Akt, have been identified at the nuclear level. Consistent with the presence of a complete PI-3K signaling pathway in the nucleus, we have recently found that phosphoinositide-dependent kinase 1 (PDK1), a kinase functioning downstream of PI-3K and upstream of Akt, is a nucleo-cytoplasmic shuttling protein. In the present review, we update our current knowledge on the regulatory mechanisms and the functional roles of PDK1 nuclear translocation. We also summarize some of the kinase-independent activities of PDK1 in cell signaling.


Asunto(s)
Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
15.
Proc Natl Acad Sci U S A ; 100(24): 14006-11, 2003 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-14623982

RESUMEN

3'-Phosphoinositide-dependent protein kinase 1 (PDK-1) phosphorylates and activates members of the AGC protein kinase family and plays an important role in the regulation of cell survival, differentiation, and proliferation. However, how PDK-1 is regulated in cells remains elusive. In this study, we demonstrated that PDK-1 can shuttle between the cytoplasm and nucleus. Treatment of cells with leptomycin B, a nuclear export inhibitor, results in a nuclear accumulation of PDK-1. PDK-1 nuclear localization is increased by insulin, and this process is inhibited by pretreatment of cells with phosphatidylinositol 3-kinase (PI3-kinase) inhibitors. Consistent with the idea that PDK-1 nuclear translocation is regulated by the PI3-kinase signaling pathway, PDK-1 nuclear localization is increased in cells deficient of PTEN (phosphatase and tensin homologue deleted on chromosome 10). Deletion mapping and mutagenesis studies unveiled that presence of a functional nuclear export signal (NES) in mouse PDK-1 located at amino acid residues 382 to 391. Overexpression of constitutively nuclear PDK-1, which retained autophosphorylation at Ser-244 in the activation loop in cells and its kinase activity in vitro, led to increased phosphorylation of the predominantly nuclear PDK-1 substrate p70 S6KbetaI. However, the ability of constitutively nuclear PDK-1 to induce anchorage-independent growth and to protect against UV-induced apoptosis is greatly diminished compared with the wild-type enzyme. Taken together, these findings suggest that nuclear translocation may be a mechanism to sequestrate PDK-1 from activation of the cytosolic signaling pathways and that this process may play an important role in regulating PDK-1-mediated cell signaling and function.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Células CHO , Línea Celular , Cricetinae , Citoplasma/metabolismo , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Insaturados/farmacología , Células HeLa , Humanos , Insulina/farmacología , Ratones , Señales de Localización Nuclear , Fosfohidrolasa PTEN , Inhibidores de las Quinasa Fosfoinosítidos-3 , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Eliminación de Secuencia , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA