Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(9): 1487-1493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261048

RESUMEN

The signal transducer and activator of transcription 3 (STAT3) protein is a key regulator of cell differentiation, proliferation, and survival in hematopoiesis, immune responses, and other biological systems. STAT3 transcriptional activity is strictly regulated through various mechanisms, such as phosphorylation and dephosphorylation. In this study, we attempted to identify novel phosphatases which regulate STAT3 activity in response to cytokine stimulations. To this end, leukemia inhibitory factor (LIF)/STAT3 dependent phosphatase induction was evaluated in the mouse hepatoma cell line Hepa1-6. After LIF stimulation, the expression of several atypical dual specific phosphatases (aDUSPs) was upregulated in Hepa1-6 cells. Among the LIF-induced aDUSPs, we focused on DUSP15 and clarified its functions in LIF/STAT3 signaling using RNA interference. DUSP15 knockdown decreased LIF-induced Socs3 mRNA expression and STAT3 translocation. Furthermore, loss of DUSP15 reduced the phosphorylation of STAT3 at Tyr705 and Janus family tyrosine kinase 1 (Jak1) at Tyr1034/1035 in response to LIF. The interaction between Jak1 and DUSP15 was observed in LIF-stimulated Hepa1-6 cells. We also demonstrated the suppression of granulocyte colony-stimulating factor (G-CSF)-mediated gp130/STAT3-dependent cell growth of Ba/F-G133 cells via DUSP15 knockdown. Therefore, DUSP15 functions as a positive feedback regulator in the Jak1/STAT3 signaling cascade.


Asunto(s)
Fosfatasas de Especificidad Dual , Janus Quinasa 1 , Factor Inhibidor de Leucemia , Factor de Transcripción STAT3 , Animales , Ratones , Línea Celular Tumoral , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Janus Quinasa 1/metabolismo , Janus Quinasa 1/genética , Factor Inhibidor de Leucemia/metabolismo , Fosforilación , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
2.
Sci Rep ; 14(1): 5799, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461189

RESUMEN

Signal-transducing adaptor protein-2 (STAP-2) is an adaptor molecule involved in several cellular signaling cascades. Here, we attempted to identify novel STAP-2 interacting molecules, and identified c-Cbl associated protein (CAP) as a binding protein through the C-terminal proline-rich region of STAP-2. Expression of STAP-2 increased the interaction between CAP and c-Cbl, suggesting that STAP-2 bridges these proteins and enhances complex formation. CAP/c-Cbl complex is known to regulate GLUT4 translocation in insulin signaling. STAP-2 overexpressed human hepatocyte Hep3B cells showed enhanced GLUT4 translocation after insulin treatment. Elevated levels of Stap2 mRNA have been observed in 3T3-L1 cells and mouse embryonic fibroblasts (MEFs) during adipocyte differentiation. The differentiation of 3T3-L1 cells into adipocytes was highly promoted by retroviral overexpression of STAP-2. In contrast, STAP-2 knockout (KO) MEFs exhibited suppressed adipogenesis. The increase in body weight with high-fat diet feeding was significantly decreased in STAP-2 KO mice compared to WT animals. These data suggest that the expression of STAP-2 correlates with adipogenesis. Thus, STAP-2 is a novel regulatory molecule that controls insulin signal transduction by forming a c-Cbl/STAP-2/CAP ternary complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Insulina , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipocitos/metabolismo , Fibroblastos/metabolismo , Insulina/metabolismo , Transducción de Señal , Diferenciación Celular/genética
3.
J Biol Chem ; 299(10): 105232, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690690

RESUMEN

After adult mammalian central nervous system injury, axon regeneration is extremely limited or absent, resulting in persistent neurological deficits. Axon regeneration failure is due in part to the presence of inhibitory proteins, including NogoA (Rtn4A), from which two inhibitory domains have been defined. When these inhibitory domains are deleted, but an amino-terminal domain is still expressed in a gene trap line, mice show axon regeneration and enhanced recovery from injury. In contrast, when there is no amino-terminal Nogo-A fragment in the setting of inhibitory domain deletion, then axon regeneration and recovery are indistinguishable from WT. These data indicated that an amino-terminal Nogo-A fragment derived from the gene trap might promote axon regeneration, but this had not been tested directly and production of this fragment without gene targeting was unclear. Here, we describe posttranslation production of an amino-terminal fragment of Nogo-A from the intact gene product. This fragment is created by proteolysis near amino acid G214-N215 and levels are enhanced by axotomy. Furthermore, this fragment promotes axon regeneration in vitro and acts cell autonomously in neurons, in contrast to the inhibitory extracellular action of other Nogo-A domains.Proteins interacting with the amino-terminal Nogo-A fragment by immunoprecipitation include HSPA8 (HSC70, HSP7C). Suppression of HSPA8 expression by shRNA decreases axon regeneration from cerebral cortical neurons and overexpression increases axon regeneration. Moreover, the amino-terminal Nogo-A fragment increases HSPA8 chaperone activity. These data provide an explanation for varied results in different gene-targeted Nogo-A mice, as well as revealing an axon regeneration promoting domain of Nogo-A.


Asunto(s)
Axones , Proteínas de la Mielina , Animales , Ratones , Axones/metabolismo , Inhibidores de Crecimiento/metabolismo , Mamíferos/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Regeneración Nerviosa/fisiología , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteolisis , Femenino , Ratones Endogámicos C57BL
4.
Int Immunol ; 34(6): 303-312, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35192696

RESUMEN

Jak3, a member of the Janus kinase family, is essential for the cytokine receptor common gamma chain (γc)-mediated signaling. During activation of Jak3, tyrosine residues are phosphorylated and potentially regulate its kinase activity. We identified a novel tyrosine phosphorylation site within mouse Jak3, Y820, which is conserved in human Jak3, Y824. IL-2-induced tyrosine phosphorylation of Jak3 Y824 in human T cell line HuT78 cells was detected by using a phosphospecific, pY824, antibody. Mutation of mouse Jak3 Y820 to alanine (Y820A) showed increased autophosphorylation of Jak3 and enhanced signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation and transcriptional activation. Stably expressed Jak3 Y820A in F7 cells, an IL-2 responsive mouse pro-B cell line Ba/F3, exhibited enhanced IL-2-dependent cell growth. Mechanistic studies demonstrated that interaction between Jak3 and STAT5 increased in Jak3 Y820A compared to wild-type Jak3. These data suggest that Jak3 Y820 plays a role in negative regulation of Jak3-mediated STAT5 signaling cascade upon IL-2-stimulation. We speculate that this occurs through an interaction promoted by the tyrosine phosphorylated Y820 or a conformational change by Y820 mutation with either the STAT directly or with the recruitment of molecules such as phosphatases via a SH2 interaction. Additional studies will focus on these interactions as Jak3 plays a crucial role in disease and health.


Asunto(s)
Factor de Transcripción STAT5 , Tirosina , Animales , Interleucina-2/metabolismo , Interleucina-2/farmacología , Janus Quinasa 3 , Ratones , Proteínas de la Leche/metabolismo , Fosforilación , Factor de Transcripción STAT5/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA