Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38785062

RESUMEN

INTRODUCTION: Castleman disease (CD) is a benign lymphoproliferative disease causing severe systemic inflammation. Interleukin-6 (IL-6) is a major pathogenesis of multicentric CD (MCD), but only 30-60% of patients respond to IL-6 inhibitors. Novel agents for IL-6 inhibitor-refractory cases are needed. Clinical data and samples are being collected on a large scale and the clinical, pathological and pathogenetic aspects are being elucidated. AREAS COVERED: The pathological and clinical classification of CD is outlined. Focusing on idiopathic MCD (iMCD), this review identifies therapeutic targets and summarizes currently recommended drugs and promising therapeutic candidates. EXPERT OPINION: The pathogenesis of MCD has been implicated in the activation of the Janus kinase (JAK)-transcriptional signaling activator (STAT)3 pathway and the phosphatidylinositol 3-kinase (PI3K)/Akt/mechanical target of rapamycin (mTOR) signaling pathway. iMCD-TAFRO (thrombocytopenia, anasarca, fever/elevated CRP, reticulin myelofibrosis/renal dysfunction, organ enlargement) is resistant to IL-6 inhibitors, and cyclosporine and mTOR inhibitors are sometimes effective. JAK inhibitors and mTOR inhibitors may be therapeutic agents for iMCD. Recently, we have shown that peripheral helper T (Tph) cell abnormalities are at the core of iMCD pathogenesis. Therapies targeting chemokine (C-X-C motif) ligand 13 (CXCL13) produced by Tph cells and blocking the Tph-CXCL13-B cell pathway may satisfy unmet need in refractory cases.

2.
Cancer Sci ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498976

RESUMEN

Triplet regimen comprising proteasome inhibitors, immunomodulatory drugs, and dexamethasone (DEX) is a recommended induction/consolidation therapy for multiple myeloma (MM) patients eligible for transplant. In this Japanese phase II study conducted from 2017 to 2019, newly diagnosed MM patients aged 20-65 received four induction cycles with bortezomib (Bor), lenalidomide (Len), and DEX (VRD), followed by Bor and high-dose melphalan with autologous stem cell rescue. Subsequently, they underwent four consolidation cycles with carfilzomib, Len, and DEX (KRD), followed by Len maintenance until disease progression. A total of 141 patients were analyzed. In an intent-to-treat population, the complete or better response post induction was 19.9%, rising to 39.7%, 58.9%, and 62.4% after transplant, consolidation, and 1-year maintenance, respectively. With a median follow-up of 38 months, the 3-year progression-free survival (PFS) rate was 83.5% and the 3-year overall survival rate was 92.5%. Severe adverse events (≥grade 3) occurred in ~30% of patients; however, there was no treatment-related mortality. These findings clearly showed the tolerability and effectiveness of this protocol. Nevertheless, patients with high-risk cytogenetics showed a trend toward lower 3-year PFS than those without (77.8% vs. 89.4%, p = 0.051), and ultra-high-risk cytogenetics (≥2 high-risk cytogenetics) had an even worse prognosis, with 61.2% 3-year PFS. To overcome this situation, a more potent treatment strategy incorporating novel agents such as the CD38-antibody should be assessed in future studies.

3.
Bone Marrow Transplant ; 59(4): 466-472, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38238452

RESUMEN

The "human leukocyte antigen (HLA) supertype" is a functional classification of HLA alleles, which was defined by structural features and peptide specificities, and has been reportedly associated with the clinical outcomes of viral infections and autoimmune diseases. Although the disparity in each HLA locus was reported to have no clinical significance in single-unit cord blood transplantation (sCBT), the clinical significance of the HLA supertype in sCBT remains unknown. Therefore, we retrospectively analyzed clinical data of 1603 patients who received sCBT in eight institutes in Japan between 2000 and 2017. Each HLA allele was categorized into 19 supertypes, and the prognostic effect of disparities was then assessed. An HLA-B supertype mismatch was identified as a poor prognostic factor (PFS: hazard ratio [HR] = 1.23, p = 0.00044) and was associated with a higher cumulative incidence (CI) of relapse (HR = 1.24, p = 0.013). However, an HLA-B supertype mismatch was not associated with the CI of acute and chronic graft-versus-host-disease. The multivariate analysis for relapse and PFS showed the significance of an HLA-B supertype mismatch independent of allelic mismatches, and other previously reported prognostic factors. HLA-B supertype-matched grafts should be selected in sCBT.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Enfermedad Injerto contra Huésped , Humanos , Pronóstico , Estudios Retrospectivos , Antígenos HLA , Antígenos de Histocompatibilidad , Antígenos HLA-B/genética , Recurrencia , Alelos , Prueba de Histocompatibilidad
4.
Blood Adv ; 8(3): 785-796, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38163319

RESUMEN

ABSTRACT: Immunomodulatory drugs (IMiDs) are key drugs for treating multiple myeloma and myelodysplastic syndrome with chromosome 5q deletion. IMiDs exert their pleiotropic effects through the interaction between cell-specific substrates and cereblon, a substrate receptor of the E3 ubiquitin ligase complex. Thus, identification of cell-specific substrates is important for understanding the effects of IMiDs. IMiDs increase the risk of thromboembolism, which sometimes results in fatal clinical outcomes. In this study, we sought to clarify the molecular mechanisms underlying IMiDs-induced thrombosis. We investigated cereblon substrates in human megakaryocytes using liquid chromatography-mass spectrometry and found that thrombospondin-1 (THBS-1), which is an inhibitor of a disintegrin-like and metalloproteinase with thrombospondin type 1 motifs 13, functions as an endogenous substrate in human megakaryocytes. IMiDs inhibited the proteasomal degradation of THBS-1 by impairing the recruitment of cereblon to THBS-1, leading to aberrant accumulation of THBS-1. We observed a significant increase in THBS-1 in peripheral blood mononuclear cells as well as larger von Willebrand factor multimers in the plasma of patients with myeloma, who were treated with IMiDs. These results collectively suggest that THBS-1 represents an endogenous substrate of cereblon. This pairing is disrupted by IMiDs, and the aberrant accumulation of THBS-1 plays an important role in the pathogenesis of IMiDs-induced thromboembolism.


Asunto(s)
Mieloma Múltiple , Tromboembolia , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Agentes Inmunomoduladores , Leucocitos Mononucleares/metabolismo , Mieloma Múltiple/genética , Tromboembolia/etiología , Trombospondinas/metabolismo , Trombospondinas/uso terapéutico
5.
Nat Commun ; 14(1): 6959, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907518

RESUMEN

Castleman disease (CD) is a rare lymphoproliferative disorder. Among subtypes of CD, idiopathic multicentric CD-not otherwise specified (iMCD-NOS) has a poor prognosis and its pathogenesis is largely unknown. Here we present a xenotransplantation model of iMCD-NOS pathogenesis. Immunodeficient mice, transplanted with lymph node (LN) cells from iMCD-NOS patients, develop iMCD-like lethal inflammation, while mice transplanted with LN cells from non-iMCD patients without inflammation serve as negative control. Grafts depleted of human CD3+ T cells fail to induce inflammation in vivo. Upon engraftment, peripheral helper T (Tph) cells expand and levels of human CXCL13 substantially increase in the sera of mice. A neutralizing antibody against human CXCL13 blocks development of inflammation and improves survival in the recipient mice. Our study thus indicates that Tph cells, producing CXCL13 play a critical role in the pathogenesis of iMCD-NOS, and establishes iMCD-NOS as an immunoregulatory disorder.


Asunto(s)
Enfermedad de Castleman , Humanos , Animales , Ratones , Enfermedad de Castleman/etiología , Enfermedad de Castleman/patología , Ganglios Linfáticos/patología , Inflamación/complicaciones , Linfocitos T/patología , Quimiocina CXCL13
6.
Commun Biol ; 6(1): 996, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773433

RESUMEN

Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.


Asunto(s)
Linfopoyesis , Telómero , Animales , Ratones , Envejecimiento , Diferenciación Celular , Linfopoyesis/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
7.
Rinsho Ketsueki ; 64(6): 547-552, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-37407480

RESUMEN

Acute myeloid leukemia (AML) is one of the most common hematologic malignancies derived from self-renewing and highly propagating leukemic stem cells (LSCs). We have previously identified T-cell immunoglobulin mucin-3 (TIM-3) as an AML LSC-specific surface molecule by comparing the gene expression profiles of LSCs and hematopoietic stem cells (HSCs). TIM-3 expression clearly discriminates LSCs from HSCs within the CD34+CD38- stem cell fraction. Furthermore, AML cells secrete galectin-9 (Gal-9, a TIM-3 ligand) in an autocrine manner, resulting in constitutive TIM-3 signaling, which maintains LSC self-renewal capacity through ß-catenin accumulation. In this study, we investigated the LSC-specific mechanisms of TIM-3 signaling. We found that TIM-3 signaling drove the canonical Wnt pathway, which was independent of Wnt ligands, to maintain cancer stemness in LSCs. Gal-9 ligation activated the cytoplasmic Src homology 2 (SH2) binding domain of TIM-3 to recruit hematopoietic cell kinase (HCK), a Src family kinase that is highly expressed in LSCs. HCK phosphorylated p120-catenin to promote the formation of the LDL receptor-related protein 6 (LRP6) signalosome, hijacking the canonical Wnt pathway. This TIM-3/HCK/p120-catenin axis was employed principally in immature LSCs compared to TIM-3-expressing exhausted T-cells.


Asunto(s)
Leucemia Mieloide Aguda , Vía de Señalización Wnt , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , beta Catenina/metabolismo , Leucemia Mieloide Aguda/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas
8.
Cancer Sci ; 114(8): 3247-3258, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37197765

RESUMEN

Metabolic alterations, especially in the mitochondria, play important roles in several kinds of cancers, including acute myeloid leukemia (AML). However, AML-specific molecular mechanisms that regulate mitochondrial dynamics remain elusive. Through the metabolite screening comparing CD34+ AML cells and healthy hematopoietic stem/progenitor cells, we identified enhanced lysophosphatidic acid (LPA) synthesis activity in AML. LPA is synthesized from glycerol-3-phosphate by glycerol-3-phosphate acyltransferases (GPATs), rate-limiting enzymes of the LPA synthesis pathway. Among the four isozymes of GPATs, glycerol-3-phosphate acyltransferases, mitochondrial (GPAM) was highly expressed in AML cells, and the inhibition of LPA synthesis by silencing GPAM or FSG67 (a GPAM-inhibitor) significantly impaired AML propagation through the induction of mitochondrial fission, resulting in the suppression of oxidative phosphorylation and the elevation of reactive oxygen species. Notably, inhibition of this metabolic synthesis pathway by FSG67 administration did not affect normal human hematopoiesis in vivo. Therefore, the GPAM-mediated LPA synthesis pathway from G3P represents a critical metabolic mechanism that specifically regulates mitochondrial dynamics in human AML, and GPAM is a promising potential therapeutic target.


Asunto(s)
Leucemia Mieloide Aguda , Dinámicas Mitocondriales , Humanos , Glicerol , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Aciltransferasas , Fosfatos
9.
Leukemia ; 37(5): 1028-1038, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973350

RESUMEN

To identify molecules/pathways governing Venetoclax (VEN) sensitivity, we performed genome-wide CRISPR/Cas9 screens using a mouse AML line insensitive to VEN-induced mitochondrial apoptosis. Levels of sgRNAs targeting March5, Ube2j2 or Ube2k significantly decreased upon VEN treatment, suggesting synthetic lethal interaction. Depletion of either Ube2j2 or Ube2k sensitized AML cells to VEN only in the presence of March5, suggesting coordinate function of the E2s Ube2j2 and Ube2k with the E3 ligase March5. We next performed CRISPR screens using March5 knockout cells and identified Noxa as a key March5 substrate. Mechanistically, Bax released from Bcl2 upon VEN treatment was entrapped by Mcl1 and Bcl-XL and failed to induce apoptosis in March5 intact AML cells. By contrast, in March5 knockout cells, liberated Bax did not bind to Mcl1, as Noxa likely occupied Mcl1 BH3-binding grooves and efficiently induced mitochondrial apoptosis. We reveal molecular mechanisms underlying AML cell-intrinsic VEN resistance and suggest a novel means to sensitize AML cells to VEN.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Línea Celular Tumoral , Proteína X Asociada a bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Enzimas Ubiquitina-Conjugadoras
10.
Cancer Sci ; 114(7): 2895-2906, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36945114

RESUMEN

The cancer stem cell (CSC) theory features typically rare self-renewing subpopulations that reconstitute the heterogeneous tumor. Identification of molecules that characterize the features of CSCs is a key imperative for further understanding tumor heterogeneity and for the development of novel therapeutic strategies. However, the use of conventional markers of CSCs is still insufficient for the isolation of bona fide CSCs. We investigated organoids that are miniature forms of tumor tissues by reconstructing cellular diversity to identify specific markers to characterize CSCs in heterogeneous tumors. Here, we report that the receptor for hyaluronan-mediated motility (RHAMM) expresses in a subpopulation of CD44+ conventional human colorectal CSC fraction. Single-cell transcriptomics of organoids highlighted RHAMM-positive proliferative cells that revealed distinct characteristics among the various cell types. Prospectively isolated RHAMM+CD44+ cells from the human colorectal cancer tissues showed highly proliferative characteristics with a self-renewal ability in comparison with the other cancer cells. Furthermore, inhibition of RHAMM strongly suppressed organoid formation in vitro and inhibited tumor growth in vivo. Our findings suggest that RHAMM is a potential therapeutic target because it is a specific marker of the proliferative subpopulation within the conventional CSC fraction.


Asunto(s)
Neoplasias Colorrectales , Receptores de Hialuranos , Humanos , Receptores de Hialuranos/metabolismo , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral
11.
Blood Adv ; 7(10): 2053-2065, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-36745103

RESUMEN

The activation of ß-catenin plays critical roles in normal stem cell function, and, when aberrantly activated, the maintenance and enhancement of cancer stemness in many solid cancers. Aberrant ß-catenin activation is also observed in acute myeloid leukemia (AML), and crucially contributes to self-renewal and propagation of leukemic stem cells (LSCs) regardless of mutations in contrast with such solid tumors. In this study, we showed that the AML-specific autocrine loop comprised of T-cell immunoglobulin mucin-3 (TIM-3) and its ligand, galectin-9 (Gal-9), drives the canonical Wnt pathway to stimulate self-renewal and propagation of LSCs, independent of Wnt ligands. Gal-9 ligation activates the cytoplasmic Src homology 2 domain of TIM-3 to recruit hematopoietic cell kinase (HCK), a Src family kinase highly expressed in LSCs but not in HSCs, and HCK phosphorylates p120-catenin to promote formation of the LDL receptor-related protein 6 (LRP6) signalosome, hijacking the canonical Wnt pathway. This TIM-3/HCK/p120-catenin axis is principally active in immature LSCs compared with TIM-3-expressed differentiated AML blasts and exhausted T cells. These data suggest that human AML LSCs constitutively activates ß-catenin via autocrine TIM-3/HCK/p120-catenin signaling, and that molecules related to this signaling axis should be critical targets for selective eradication of LSCs without impairing normal HSCs.


Asunto(s)
Leucemia Mieloide Aguda , Vía de Señalización Wnt , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/genética , beta Catenina/metabolismo , Leucemia Mieloide Aguda/genética , Células Madre Hematopoyéticas/metabolismo , Ligandos
12.
Blood Adv ; 7(14): 3592-3603, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-36044390

RESUMEN

Cancer-specific metabolic activities play a crucial role in the pathogenesis of human malignancies. To investigate human acute leukemia-specific metabolic properties, we comprehensively measured the cellular metabolites within the CD34+ fraction of normal hematopoietic stem progenitor cells (HSPCs), primary human acute myelogenous leukemia (AML), and acute lymphoblastic leukemia (ALL) cells. Here, we show that human leukemia cells are addicted to the branched-chain amino acid (BCAA) metabolism to maintain their stemness, irrespective of myeloid or lymphoid types. Human primary acute leukemias had BCAA transporters for BCAA uptake, cellular BCAA, α-ketoglutarate (α-KG), and cytoplasmic BCAA transaminase-1 (BCAT1) at significantly higher levels than control HSPCs. Isotope-tracing experiments showed that in primary leukemia cells, BCAT1 actively catabolizes BCAA using α-KG into branched-chain α-ketoacids, whose metabolic processes provide leukemia cells with critical substrates for the trichloroacetic acid cycle and the synthesis of nonessential amino acids, both of which reproduce α-KG to maintain its cellular level. In xenogeneic transplantation experiments, deprivation of BCAA from daily diet strongly inhibited expansion, engraftment and self-renewal of human acute leukemia cells. Inhibition of BCAA catabolism in primary AML or ALL cells specifically inactivates the function of the polycomb repressive complex 2, an epigenetic regulator for stem cell signatures, by inhibiting the transcription of PRC components, such as zeste homolog 2 and embryonic ectoderm development. Accordingly, BCAA catabolism plays an important role in the maintenance of stemness in primary human AML and ALL, and molecules related to the BCAA metabolism pathway should be critical targets for acute leukemia treatment.


Asunto(s)
Aminoácidos de Cadena Ramificada , Leucemia Mieloide Aguda , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Complejo Represivo Polycomb 2 , Transaminasas/metabolismo , Cetoácidos
13.
Int J Hematol ; 117(2): 287-292, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36136227

RESUMEN

Donor-derived hematological malignancies have been recognized as rare but serious late complications in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Most cases in the literature were diagnosed as myelodysplastic syndrome or acute leukemia, with very few malignant lymphoma reported. We herein present another case of donor-derived Burkitt lymphoma that occurred 9 years after allo-HSCT under continued administration of immunosuppressants for chronic graft-versus-host disease (GVHD). The patient achieved a partial response after rituximab-combined intensive chemotherapy. To reduce the risk of relapse and to avoid organ toxicities due to repeated chemotherapies, we performed upfront high-dose chemotherapy followed by stem cell rescue using donor-derived CD34+ cells, called pseudo-autologous HSCT (pASCT), and adjusted immunosuppressants appropriately. The patient remained disease-free for 23 months after pASCT without exacerbation of cGVHD. Although the observation period has been relatively short and longer follow-up is needed, pASCT may be a feasible option for donor-derived lymphoma even in patients with active cGVHD.


Asunto(s)
Linfoma de Burkitt , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Linfoma , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Autólogo , Linfoma de Burkitt/etiología , Linfoma de Burkitt/terapia , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/patología , Trasplante Homólogo/efectos adversos , Linfoma/complicaciones , Inmunosupresores , Leucemia Mieloide Aguda/complicaciones
14.
Int J Hematol ; 116(4): 603-611, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35701707

RESUMEN

Relapsed and refractory aggressive lymphoma have a poor prognosis. High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) is effective in chemosensitive patients. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is among the few options for non-chemosensitive patients. 18Fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (18FDG-PET/CT) is the standard tool for evaluating response to chemotherapy and residual tumor volume. However, accurate assessment of residual tumor volume is not currently being achieved in clinical practice, and its value in prognostic and therapeutic stratification remains unclear. To answer this question, we investigated the efficacy of quantitative indicators, including total metabolic tumor volume (TMTV), in predicting prognosis after auto-HSCT and allo-HSCT. We retrospectively analyzed 39 patients who received auto-HSCT and 28 who received allo-HSCT. In the auto-HSCT group, patients with a higher TMTV had a poor prognosis due to greater risk of relapse. In the allo-HSCT group, patients with a higher TMTV had a lower progression-free survival rate and a significantly higher relapse rate. Neither Deauville score nor other clinical parameters were associated with prognosis in either group. Therefore, pre-transplant TMTV on PET is effective for prognostic prediction and therapeutic decision-making for relapsed or refractory aggressive lymphoma.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma no Hodgkin , Linfoma , Fluorodesoxiglucosa F18 , Glucosa , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/terapia , Neoplasia Residual , Tomografía Computarizada por Tomografía de Emisión de Positrones , Pronóstico , Estudios Retrospectivos , Carga Tumoral
16.
Int J Hematol ; 116(2): 258-265, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35524024

RESUMEN

Prophylactic use of letermovir (LMV) markedly reduces the incidence of early clinically significant cytomegalovirus (csCMV) infection within the first 100 days after allogeneic hematopoietic cell transplantation (allo-HCT), which improves transplant outcomes. However, some patients eventually develop late-csCMV infection (beyond day 100) after completing LMV prophylaxis. To assess the incidence of late-csCMV infection as well as its risk factors and impacts on transplant outcome, a total of 81 allo-HCT recipients who had not developed early csCMV infection during LMV prophylaxis were retrospectively analyzed. Among them, 23 (28.4%) patients developed late-csCMV infection (until day 180) at a median time of 131 days after transplantation and 30 days after LMV discontinuation, respectively. Late-csCMV infection was correlated with apparent delayed immune reconstitution: patients transplanted from HLA-mismatched donors (hazard ratio [HR] = 13.0, p = 0.011) or CMV-IgG-negative donors (HR = 2.39, p = 0.043) had a significantly higher risk. In this study, transplant outcomes did not differ between patients with and without late-csCMV infection. This suggests a need to clarify the efficacy of extended administration of LMV for preventing late-csCMV infection in a larger number of allo-HCT recipients, especially those with "high-risk" donors.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Acetatos , Antivirales/uso terapéutico , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/etiología , Infecciones por Citomegalovirus/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Quinazolinas , Estudios Retrospectivos , Factores de Riesgo
17.
Cancer Lett ; 532: 215597, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35150810

RESUMEN

Cancer-associated fibroblasts (CAFs) play an important role in cancer progression. However, the origin of CAFs remains unclear. This study shows that macrophages in malignant ascites and pleural effusions (cavity fluid-associated macrophages: CAMs) transdifferentiate into fibroblast-like cells. CAMs obtained from gastrointestinal cancer patients were sorted by flow cytometry and cultured in vitro. CD45+CD14+ CAMs transdifferentiated into CD45-CD90+ fibroblast-like cells that exhibited spindle shapes. Then, cDNA microarray analysis showed that the CD45-CD90+ fibroblast-like cells (macrophage-derived CAFs: MDCAFs) had a fibroblast-specific gene expression signature and produced growth factors for epithelial cell proliferation. Human colon cancer cells transplanted into immunodeficient mice with MDCAFs formed larger tumors than cancer cells alone. Gene ontology analyses showed the involvement of TGFß signaling and cell-matrix adhesion in MDCAFs, and transdifferentiation of CAMs into MDCAFs was canceled by inhibiting TGFß and cell adhesion. Furthermore, the acquired genetic alterations in hematopoietic stem cells (HSCs) were shared in CAMs and MDCAFs. Taken together, CAMs could be a source of CAFs and might originate from HSCs. We propose the transdifferentiation process of CAMs into MDCAFs as a new therapeutic target for fibrosis associated with gastrointestinal cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Peritoneales , Derrame Pleural , Animales , Ascitis/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Fibroblastos/metabolismo , Humanos , Macrófagos , Ratones , Neoplasias Peritoneales/metabolismo , Derrame Pleural/metabolismo , Derrame Pleural/patología , Antígenos Thy-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
18.
Blood Adv ; 6(7): 2388-2402, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-34638128

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy, with varying prognosis after the gold standard rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). Several prognostic models have been established by focusing primarily on characteristics of lymphoma cells themselves, including cell-of-origin (COO), genomic alterations, and gene/protein expressions. However, the prognostic impact of the lymphoma microenvironment and its association with characteristics of lymphoma cells are not fully understood. Using the nCounter-based gene expression profiling of untreated DLBCL tissues, we assess the clinical impact of lymphoma microenvironment on the clinical outcomes and pathophysiological, molecular signatures in DLBCL. The presence of normal germinal center (GC)-microenvironmental cells, including follicular T cells, macrophage/dendritic cells, and stromal cells in lymphoma tissue indicates a positive therapeutic response. Our prognostic model, based on quantitation of transcripts from distinct GC-microenvironmental cell markers, clearly identified patients with graded prognosis independently of existing prognostic models. We observed increased incidences of genomic alterations and aberrant gene expression associated with poor prognosis in DLBCL tissues lacking GC-microenvironmental cells relative to those containing these cells. These data suggest that the loss of GC-associated microenvironmental signature dictates clinical outcomes of DLBCL patients reflecting the accumulation of "unfavorable" molecular signatures.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células B Grandes Difuso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Centro Germinal/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Fenotipo , Prednisona/uso terapéutico , Rituximab/uso terapéutico , Microambiente Tumoral , Vincristina/uso terapéutico
19.
Blood Cell Ther ; 5(Spec Edition): S1-S5, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-37220607

RESUMEN

Acute myeloid leukemia (AML), one of the most common hematological malignancies worldwide, is derived from a fraction of stem cells known as leukemic stem cells (LSCs), which possess self-renewal and high propagation capacities. Remaining quiescent and being resistant to conventional chemotherapy, residual LSCs after chemotherapy drive leukemia regrowth, leading to AML relapse. Therefore, the eradication of LSCs is critical for the treatment of AML. We previously identified hepatitis A virus cellular receptor 2 (HAVCR2/TIM-3) as an LSC-specific surface molecule by comparing gene expression in LSCs and hematopoietic stem cells (HSCs). TIM-3 expression clearly discriminated LSCs from HSCs within the CD34+CD38- stem cell fraction. Furthermore, AML cells secrete galectin-9, a TIM-3 ligand, in an autocrine manner, leading to constitutive TIM-3 signaling that maintains the self-renewal capacity of LSCs via the induction of ß-catenin accumulation. Thus, TIM-3 is an indispensable functional molecule for human LSCs. Herein, we review the functional aspects of TIM-3 in AML and evaluate minimal/measurable residual disease with a focus on CD34+CD38-TIM-3+ LSCs. Using sequential genomic analysis of identical patients, we determined that CD34+CD38-TIM-3+ cells in the complete remission (CR) phase after allogeneic stem cell transplantation (allo-SCT) are the LSCs responsible for AML relapse. We retrospectively evaluated the incidence of TIM-3+ residual LSCs. All analyzed patients achieved CR and complete donor chimerism at the engraftment phase; however, the high frequency of residual TIM-3+ LSCs within the CD34+CD38- fraction at engraftment was a significant and independent risk factor for relapse. Residual TIM-3+ LSC levels in the engraftment phase had a stronger impact on relapse than did pre-SCT disease status. Therefore, the evaluation of residual TIM-3+ LSCs is a promising approach for predicting leukemia relapse after allo-SCT.

20.
Int J Hematol ; 114(6): 691-700, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34453685

RESUMEN

Granulocyte transfusion (GTX) is a therapeutic option for patients with prolonged neutropenia suffering from severe infections. Efficient granulocyte collection by apheresis from donors requires clear separation of granulocytes from red blood cells (RBCs), and infusion of high-molecular-weight (MW) hydroxyethyl starch (HES) facilitates RBC sedimentation. Recent research has shown that apheresis with medium-MW HES may prevent adverse effects of high-MW HES on donors, but the rationale for collection with medium-MW HES has yet to be evaluated. To validate the use of medium-MW HES, we first performed experiments with whole blood samples to determine how efficiently high-, medium- and low-MW HES separated granulocytes from RBCs, and found that medium-MW HES was just as efficient as high-MW HES. We also reviewed clinical data of granulocyte apheresis at our institution to evaluate granulocyte yields. Retrospective analysis of granulocyte collection revealed that apheresis with medium-MW HES yielded sufficient granulocytes for GTX and that donor anemia reduced collection efficiency. These results collectively may help us to establish a safer method for apheresis targeting polymorphonuclear granulocytes as an alternative to high-MW HES.


Asunto(s)
Eliminación de Componentes Sanguíneos/métodos , Granulocitos/citología , Derivados de Hidroxietil Almidón , Neutrófilos/citología , Adulto , Separación Celular/métodos , Femenino , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Humanos , Derivados de Hidroxietil Almidón/química , Leucaféresis/métodos , Masculino , Persona de Mediana Edad , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...