Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395283

RESUMEN

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Microesferas , Quitosano/farmacología , Ácido Poliglicólico/farmacología , Ácido Láctico/farmacología , Glicoles , Preparaciones de Acción Retardada/farmacología , Células Cultivadas , Diferenciación Celular , Condrogénesis
2.
Phytochemistry ; 219: 113974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211847

RESUMEN

Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 µM, respectively.


Asunto(s)
Apiaceae , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Flores , Aldo-Ceto Reductasas
3.
J Org Chem ; 88(13): 9167-9186, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343240

RESUMEN

Fusapyrones are fungal metabolites, which have been reported to have broad-spectrum antibacterial and antifungal properties. Despite the first members of this chemical class being described three decades prior, many aspects of their structures have remained unresolved, thereby constraining efforts to fully understand structure-activity relationships within this metabolite family and impeding the design of streamlined syntheses. Among the main challenges posed by fusapyrones is the incorporation of several single and groups of stereocenters separated by atoms with freely rotating bonds, which have proven unyielding to spectroscopic analyses. In this study, we obtained a series of new (2-5 and 7-9) and previously reported fusapyrones (1 and 6), which were subjected to a combination of spectroscopic, chemical, and computational techniques enabling us to offer proposals for their full structures, as well as provide a pathway to reinterpreting the absolute configurations of other published fusapyrone metabolites. Biological testing of the fusapyrones revealed their abilities to inhibit and disrupt biofilms made by the human fungal pathogen, Candida albicans. These results show that fusapyrones reduce hyphae formation in C. albicans, as well as decrease the surface adherence capabilities of planktonic cells and cells transitioning into early-stage biofilm formation.


Asunto(s)
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Pironas/farmacología , Biopelículas
4.
Nat Commun ; 14(1): 2593, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147330

RESUMEN

Programmed cell death protein 1 (PD-1), expressed on tumor-infiltrating T cells, is a T cell exhaustion marker. The mechanisms underlying PD-1 upregulation in CD4 T cells remain unknown. Here we develop nutrient-deprived media and a conditional knockout female mouse model to study the mechanism underlying PD-1 upregulation. Reduced methionine increases PD-1 expression on CD4 T cells. The genetic ablation of SLC43A2 in cancer cells restores methionine metabolism in CD4 T cells, increasing the intracellular levels of S-adenosylmethionine and yielding H3K79me2. Reduced H3K79me2 due to methionine deprivation downregulates AMPK, upregulates PD-1 expression and impairs antitumor immunity in CD4 T cells. Methionine supplementation restores H3K79 methylation and AMPK expression, lowering PD-1 levels. AMPK-deficient CD4 T cells exhibit increased endoplasmic reticulum stress and Xbp1s transcript levels. Our results demonstrate that AMPK is a methionine-dependent regulator of the epigenetic control of PD-1 expression in CD4 T cells, a metabolic checkpoint for CD4 T cell exhaustion.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Femenino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD8-positivos , Metionina/metabolismo , Ratones Noqueados , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Racemetionina/metabolismo , Regulación hacia Arriba
5.
Pharmaceuticals (Basel) ; 16(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242522

RESUMEN

Angelica keiskei is a perennial plant, belonging to the Apiaceae family and originating from Japan. This plant has been reported to act as a diuretic, analeptic, antidiabetic, hypertensive, tumor, galactagogue, and laxative. The mechanism of action of A. keiskei is not known, but previous studies have suggested that it may act as an antioxidant. In this work, we used Drosophila melanogaster to evaluate the impact of A. keiskei on lifespan and healthspan and its potential anti-aging mechanism by conducting multiple assays on three fly strains: w1118, chico, and JIV. We observed that the extract extended lifespan and improved healthspan in a sex- and strain-dependent manner. A. keiskei extended lifespan and improved reproductive fitness in female flies and either had no effect or decreased survival and physical performance in males. The extract protected against the superoxide generator paraquat in both sexes. These sex-specific effects suggest that A. keiskei may act through age-specific pathways such as the insulin and insulin-like growth factor signaling (IIS) pathways. Upon examination, we found that the increased survival of A. keiskei-fed females was dependent on the presence of the insulin receptor substrate chico, supporting the role of IIS in the action of A. keiskei.

6.
Front Nutr ; 10: 1334344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188878

RESUMEN

Wheat (Triticum aestivum Linn.; Poaceae) is the second most cultivated food crop among all global cereal crop production. The high carbohydrate content of its grains provides energy, multiple nutrients, and dietary fiber. After threshing, a substantial amount of wheat hull is produced, which serves as the non-food component of wheat. For the valorization of these by-products as a new resource from which functional components can be extracted, the hull from the seeds of cultivated wheat mutant lines bred after γ-irradiation were collected. Untargeted metabolite analysis of the hull of the original cultivar (a crossbreeding cultivar., Woori-mil × D-7) and its 983 mutant lines were conducted using ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry technique. A total of 55 molecules were tentatively identified, including 21 compounds found in the Triticum species for the first time and 13 compounds not previously described. Among them, seven flavonolignans with a diastereomeric structure, isolated as a single compound from the hull of T. aestivum in our previous study, were used as the standards in the metabolite analysis. The differences in their collision cross-section values were shown to contribute to the clear distinction between tricine-lignan stereoisomers. To select functionally active agents with anti-inflammatory activity among the identified compounds, the wheat hull samples were evaluated for their inhibitory effect on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. As a result of multivariate analysis based on the results of chemical and biological profiles of the wheat hull samples, 10 metabolites were identified as key markers, contributing to the distinction between active and inactive mutant lines. Considering that one of the four key markers attributed to anti-inflammatory activity has been identified to be a flavonolignan, the wheat hull could be a valuable source of diverse tricin-lignan type compounds and used as a natural health-promoting product in food supplements.

7.
ACS Omega ; 7(46): 42607-42612, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36440115

RESUMEN

Choline and choline esters are essential nutrients in biological systems for carrying out normal functions, such as the modulation of neurotransmission and the formation and maintenance of cell membranes. Choline sulfate is reportedly involved in the defense mechanism of accumulating sulfur resources against sulfur deficiency. Contrary to expectations, a full assignment of the 1H NMR spectrum of choline sulfate has not been reported. The present study pioneered a full assignment by quantum-mechanical driven 1H iterative full spin analysis. The complex peak patterns were analyzed in terms of heteronuclear and non-first-order coupling. The 1H-14N coupling constants, including two-bond coupling, which can be neglected, were accurately determined by iterative optimization. Non-first-order splitting has been described to be due to the presence of magnetically non-equivalent geminal protons. Moreover, in the comparison of the methylene proton resonance patterns of choline sulfate with choline and choline phosphate, the differences in the geminal and vicinal coupling constants were further examined through spectral simulation excluding the heteronuclear coupling. The precise spectral interpretation provided in this study is expected to contribute to future 1H NMR-based qualitative or quantitative studies of choline sulfate-containing sources.

8.
Molecules ; 27(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36364218

RESUMEN

Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.


Asunto(s)
Apiaceae , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Apiaceae/química , Cumarinas/farmacología , Aldo-Ceto Reductasas
9.
J Agric Food Chem ; 70(40): 13002-13014, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167496

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are indispensable analytical tools to provide chemical fingerprints in metabolomics studies. The present study evaluated radiation breeding wheat lines for chemical changes by non-targeted NMR-based metabolomics analysis of bran extracts. Multivariate analysis following spectral binning suggested pyrrole-2-carbaldehydes as chemical markers of four mutant lines with distinct NMR fingerprints in a δH range of 9.28-9.40 ppm. Further NMR and MS data analysis, along with chromatographic fractionation and synthetic preparation, aimed at structure identification of marker metabolites and identified five pyrrole-2-carbaldehydes. Quantum-mechanical driven 1H iterative full spin analysis (QM-HiFSA) on synthetic pyrrole-2-carbaldehydes provided a precise description of complex peak patterns. Biological evaluation of pyrrole-2-carbaldehydes was performed with nine synthetic products, and six compounds showed hepatoprotective effects via modulation of reactive oxygen species production. Given that three out of five identified in wheat bran of radiation were described for hepatoprotective activity, the value of radiation mutation to greatly enhance pyrrole-2-carbaldehyde production was supported.


Asunto(s)
Fibras de la Dieta , Metabolómica , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas , Metabolómica/métodos , Pirroles , Especies Reactivas de Oxígeno
10.
Phytochemistry ; 203: 113375, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35973611

RESUMEN

Nardostachys jatamansi is close to Valerian in consideration of their same psychoactive effects, such as sedation and neuroprotection. Valeriana-type iridoids are major active components of Valerian, but few valeriana-type iridoids have been isolated from N. jatamansi. Iridoid-targeting chemical investigation of the rhizomes of N. jatamansi resulted in the isolation of seven valeriana-type iridoid glycosides, four of which are previously undescribed. Their structures were determined through NMR spectroscopy, high-resolution mass spectrometry, and optical rotation experiments. In addition, the inaccurate configurations of patrinalloside and 6″-acetylpatrinalloside from previous reports were corrected. These compounds, unstable due to alcoholic solvents, were more stable in the mixtures than in purified forms, as monitored by the qNMR method, supporting the use of natural products as mixtures. Furthermore, the isolates, as well as crude and solvent partition extracts, were found to have a protective effect against hydrogen-peroxide-induced toxicity in human neuroblastoma cells, as confirmed by assays for cell viability and antioxidation. These findings suggest the potential therapeutic application of the valeriana-type iridoid glycosides isolated herein with improved biochemical stability.


Asunto(s)
Productos Biológicos , Nardostachys , Neuroblastoma , Valeriana , Humanos , Hidrógeno/análisis , Peróxido de Hidrógeno/análisis , Glicósidos Iridoides/farmacología , Iridoides/química , Estrés Oxidativo , Extractos Vegetales/química , Raíces de Plantas/química , Rizoma , Solventes , Valeriana/química
11.
Front Nutr ; 9: 950505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811944

RESUMEN

[This corrects the article DOI: 10.3389/fnut.2021.806744.].

12.
Biomed Pharmacother ; 150: 113073, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658216

RESUMEN

Alzheimer's disease (AD) is a well-known type of age-related dementia. The present study was conducted to investigate the effect of xanthoangelol against memory deficit and neurodegeneration associated with AD. Preliminarily, xanthoangelol produced neuroprotective effect against H2O2-induced HT-22 cells. Furthermore, effect of xanthoangelol against scopolamine-induced amnesia in mice was determined by intraperitoneally (i.p.) administering xanthoangelol (1, 10 and 20 mg/kg), 30 min prior to induction. Mice were administered scopolamine at a concentration of 1 mg/kg; i.p. for the induction of amnesia associated with AD. Xanthoangelol dose dependently reduced the symptoms of Alzheimer's disease as observed by the results obtained from the behavioral analysis performed using Morris water maze and Y-maze test. The immunohistochemical analysis suggested that xanthoangelol significantly improved Keap-1/Nrf-2 signaling pathway. It greatly reduced the effects of oxidative stress and showed improvement in the anti-oxidant enzyme such as GSH, GST, SOD and catalase. Additionally, xanthoangelol decreased the expression of transient receptor potential vanilloid 1 (TRPV-1), a nonselective cation channel, involved in synaptic plasticity and memory. It activated the anti-oxidants and attenuated the apoptotic (Bax/Bcl-2) pathway. Xanthoangelol also significantly attenuated the scopolamine-induced neuroinflammation by the inhibition of interleukin-1 beta (IL-1ß), and tumor necrosis factor-α (TNF-α) levels. The histological analysis, showed a significant reduction in amyloid plaques by xanthoangelol. Therefore, the present study indicated that xanthoangelol has the ability to ameliorate the AD symptoms by attenuating neuroinflammation and neurodegeneration induced by scopolamine.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Enfermedad de Alzheimer/tratamiento farmacológico , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Amnesia/metabolismo , Animales , Antioxidantes/farmacología , Chalcona/análogos & derivados , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Peróxido de Hidrógeno/metabolismo , Aprendizaje por Laberinto , Ratones , Estrés Oxidativo , Escopolamina/farmacología , Canales Catiónicos TRPV/metabolismo
13.
ACS Omega ; 7(9): 7675-7682, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284725

RESUMEN

Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.

14.
Plants (Basel) ; 10(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34451706

RESUMEN

Coreopsis species have been developed to produce cultivars of various floral colors and sizes and are also used in traditional medicine. To identify and evaluate mutant cultivars of C. rosea and C. verticillata, their phytochemical profiles were systematically characterized using ultra-performance liquid chromatography time-of-flight mass spectrometry, and their anti-diabetic effects were evaluated using the dipeptidyl peptidase (DPP)-IV inhibitor screening assay. Forty compounds were tentatively identified. This study is the first to provide comprehensive chemical information on the anti-diabetic effect of C. rosea and C. verticillata. All 32 methanol extracts of Coreopsis cultivars inhibited DPP-IV activity in a concentration-dependent manner (IC50 values: 34.01-158.83 µg/mL). Thirteen compounds presented as potential markers for distinction among the 32 Coreopsis cultivars via principal component analysis and orthogonal partial least squares discriminant analysis. Therefore, these bio-chemometric models can be useful in distinguishing cultivars as potential dietary supplements for functional plants.

15.
Phytochem Anal ; 32(6): 1067-1073, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33786911

RESUMEN

INTRODUCTION: Quantitative nuclear magnetic resonance (qNMR) is one of the effective and reliable quantification tools for natural product research. Myelochroa leucotyliza belongs to the genus Myelochroa, a common foliose lichen genus found in the Korean Peninsula, and has not been quantitatively analysed using NMR. Previous chemical studies on M. leucotyliza have been limited to the main components by traditional thin-layer chromatography (TLC) experiments. OBJECTIVE: We explored the stability of atranorin, a major component of M. leucotyliza, in methanol and acetone using NMR and characterised the changes in the chemical profiles of the lichen extracts in methanol and acetone using qNMR. METHODOLOGY: Atranorin transformation in the presence of methanol was analysed using time-dependent proton (1 H)-NMR analysis (600 MHz NMR spectrometer). A 1 H qNMR (qHNMR) method was established using dimethyl sulfone as the internal standard for quantifying the selected components isolated from M. leucotyliza. Homogenous mixtures of the samples were dissolved in deuterated chloroform. RESULTS: Time-dependent 1 H-NMR experiments revealed that atranorin (5) from lichen M. leucotyliza decomposed into atraric acid (1) and methyl haemmatommate (2) in methanol. Four components were identified from M. leucotyliza: 1, 2, usnic acid (4), and 5, and their respective contents were determined using qHNMR. The percentages (w/w) of 1, 2, and 4 in the methanol extract were calculated as 5.66%, 0.69%, and 0.90%, while those of 1, 4, and 5 in the acetone extract were 1.70%, 1.68%, and 19.11%, respectively. CONCLUSION: We used qHNMR to effectively analyse quantitative compositional variations in two different M. leucotyliza extracts and reliably determined the chemical conversion of the unstable compound atranorin.


Asunto(s)
Líquenes , Cromatografía en Capa Delgada , Hidroxibenzoatos , Parmeliaceae , Solventes
16.
Front Nutr ; 8: 806744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35059428

RESUMEN

Recently, wheat has attracted attention as a functional food, rather than a simple dietary energy source. Accordingly, whole-grain intake increases with an understanding of bioactive phytochemicals in bran. The development of colored wheat has drawn more attention to the value of bran owing to its nutritional quality, as well as the antioxidant properties of the colorant. The present 1H NMR-based chemometric study evaluated the compositional improvement of radiation-induced mutants in purple wheat by focusing on the predominant metabolites with high polarity. A total of 33 metabolites, including three choline derivatives, three sugar alcohols, four sugars, 13 amino acids, eight organic acids, and two nucleosides, were identified throughout the 1H NMR spectra, and quantification data were obtained for the identified metabolites via peak shape-based quantification. Principal component and hierarchical cluster analyses were conducted for performing multivariate analyses. The colored original wheat was found to exhibit improvements compared to yellow wheat in terms of the contents of primary metabolites, thus highlighting the importance of conducting investigations of polar metabolites. The chemometrics studies further revealed mutant lines with a compositional enhancement for metabolites, including lysine, proline, acetate, and glycerol.

17.
Bioorg Chem ; 102: 104095, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32721777

RESUMEN

Bioassay-guided fractionation of a 90% ethanol extract of Periostracum Cicadae led to the isolation of two new N-acetyldopamine dimers (1a/1b) along with six known dimers (2a/2b, 3a/3b, and 4a/4b) and two monomers (5a/5b); compounds 2a/2b, 4a/4b and 5a/5b were newly isolated from this material. All compounds were isolated as enantiomeric mixtures and each enantiomer was successfully separated by chiral-phase HPLC. The structures including absolute configurations were confirmed by high-resolution electrospray ionization mass spectrometry (HR-ESIMS), 1D/2D nuclear magnetic resonance (NMR) spectroscopy, 1H iterative Full Spin Analysis (HiFSA), and electronic circular dichroism (ECD) spectroscopy. Subsequently, the bioactivities of these isolates were evaluated via CD4+ T cell differentiations, which are critical for immune responses and inflammation. The results revealed that compound 5b was observed to enhance the IFN-γ+ Th1 differentiation, which may have a potential for cancer immunotherapy.


Asunto(s)
Dopamina/análogos & derivados , Hemípteros/química , Animales , Diferenciación Celular/efectos de los fármacos , Dopamina/química , Dopamina/aislamiento & purificación , Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad , Células TH1 , Células Th17
18.
J Nat Prod ; 83(6): 2010-2024, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32510949

RESUMEN

The structures of four leucinostatin analogues (1-4) from Ophiocordyceps spp. and Purpureocillium spp. were determined together with six known leucinostatins [leucinostatins B (5), A (6), B2 (7), A2 (8), F (9), and D (10)]. The structures of the metabolites were established using a combination of analytical methods including HRESIMS and MS/MS experiments, 1D and 2D NMR spectroscopy, chiral HPLC, and advanced Marfey's analysis of the acid hydrolysate, as well as additional empirical and chemical methods. Compounds 1-10 were evaluated for their biological effects on triple negative breast cancer (TNBC) cells. Leucinostatins 1-10 showed selective cytostatic activities in MDA-MB-453 and SUM185PE cells representing the luminal androgen receptor subtype of TNBC. This selective activity motivated further investigation into the mechanism of action of leucinostatin B (5). The results demonstrate that this peptidic fungal metabolite rapidly inhibits mTORC1 signaling in leucinostatin-sensitive TNBC cell lines, but not in leucinostatin-resistant cells. Leucinostatins have been shown to repress mitochondrial respiration through inhibition of the ATP synthase, and we demonstrated that both the mTORC1 signaling and LAR-selective activities of 5 were recapitulated by oligomycin. Thus, inhibition of the ATP synthase with either leucinostatin B or oligomycin is sufficient to selectively impede mTORC1 signaling and inhibit the growth of LAR-subtype cells.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Ascomicetos/química , Cordyceps/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Hidrólisis , Espectroscopía de Resonancia Magnética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Consumo de Oxígeno , Receptores Androgénicos/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray
19.
J Nat Prod ; 83(3): 584-592, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32105068

RESUMEN

An extract prepared from the fruit of Choerospondias axillaris exhibited differential cytotoxic effects when tested in a panel of pediatric cancer cell lines [Ewing sarcoma (A-673), rhabdomyosarcoma (SJCRH30), medulloblastoma (D283), and hepatoblastoma (Hep293TT)]. Bioassay-guided fractionation led to the purification of five new hydroquinone-based metabolites, choerosponols A-E (1-5), bearing unsaturated hydrocarbon chains. The structures of the natural products were determined using a combination of 1D and 2D NMR, HRESIMS, ECD spectroscopy, and Mosher ester analyses. The purified compounds were evaluated for their antiproliferative and cytotoxic activities, revealing that 1, which contains a benzofuran moiety, exhibited over 50-fold selective antiproliferative activity against Ewing sarcoma and medulloblastoma cells with growth inhibitory (GI50) values of 0.19 and 0.07 µM, respectively. The effects of 1 were evaluated in a larger panel of cancer cell lines, and these data were used in turn to interrogate the Project Achilles cancer dependency database, leading to the identification of the MCT1 transporter as a functional target of 1. These data highlight the utility of publicly available cancer dependency databases such as Project Achilles to facilitate the identification of the mechanisms of action of compounds with selective activities among cancer cell lines, which can be a major challenge in natural products drug discovery.


Asunto(s)
Anacardiaceae/química , Antineoplásicos Fitogénicos/farmacología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Frutas/química , Humanos , Estructura Molecular , Fitoquímicos/farmacología , Vietnam
20.
ACS Infect Dis ; 5(8): 1456-1470, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265248

RESUMEN

It is estimated that Trichomonas vaginalis affects an astonishing 3.9% of the world's population, and while many of those infected are asymptomatic, progression of the disease can lead to serious health problems. Currently, the nitroimidazoles constitute the only drug class approved to treat trichomoniasis in the United States, which makes the spread of drug resistance a realistic concern. We developed a new image-based, high-throughput, and high-content assay for testing natural products (purified compounds and extracts) for antitrichomonal activity. Applying this assay system to a library of fungal natural product extracts led to the identification of three general classes of natural product inhibitors that exhibited moderate to strong activities against T. vaginalis: anthraquinones, xanthone-anthraquinone heterodimers, and decalin-linked tetramic-acid-containing metabolites. The tetramate natural products emerged as the most promising candidate molecules with pyrrolocin A (51) exhibiting potent activity against the parasite (EC50 = 60 nM), yet this metabolite showed limited toxicity to mammalian cell lines (selectivity index values of 100 and 167 versus 3T3 fibroblast and Ect1 normal cervical cells, respectively). The imaging-based assay system is a powerful tool for the bioassay-guided purification of single-component antitrichomonal biomolecules from complex natural product mixtures.


Asunto(s)
Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Trichomonas vaginalis/efectos de los fármacos , Antiprotozoarios/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Línea Celular , Femenino , Fibroblastos/efectos de los fármacos , Hongos/química , Humanos , Pirrolidinonas/aislamiento & purificación , Pirrolidinonas/farmacología , Quinonas/aislamiento & purificación , Quinonas/farmacología , Sensibilidad y Especificidad , Vaginitis por Trichomonas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...