Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 10(1): 18532, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116201

RESUMEN

Ethiopia is the largest wheat producer in sub-Saharan Africa yet remains a net importer. Increasing domestic wheat production is a national priority. Improved varieties provide an important pathway to enhancing productivity and stability of production. Reliably tracking varietal use and dynamics is a challenge, and the value of conventional recall surveys is increasingly questioned. We report the first nationally representative, large-scale wheat DNA fingerprinting study undertaken in Ethiopia. Plot level comparison of DNA fingerprinting with farmer recall from nearly 4000 plots in the 2016/17 season indicates that only 28% of farmers correctly named wheat varieties grown. The DNA study reveals that new, rust resistant bread wheat varieties are now widely adopted. Germplasm originating from CGIAR centres has made a significant contribution. Corresponding productivity gains and economic benefits have been substantial, indicating high returns to investments in wheat improvement. The study provides an accurate assessment of wheat varietal status and sets a benchmark for national policy-makers and donors. In recent decades, the Ethiopian wheat landscape has transformed from local tetraploid varieties to widespread adoption of high yielding, rust resistant bread wheat. We demonstrate that DNA fingerprinting can be applied at scale and is likely to transform future crop varietal adoption studies.


Asunto(s)
Agricultura/métodos , Dermatoglifia del ADN/métodos , Triticum/genética , Productos Agrícolas/genética , Etiopía , Agricultores/educación
3.
Theor Appl Genet ; 124(4): 713-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22048641

RESUMEN

Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing these clones as polymorphic between parents and segregating in a population of 92 recombinant inbred lines (RIL) developed from the cross between H. chilense accessions H1 and H7. Using the segregation data a high-density map of 1,503 cM was constructed with average inter-bin density of 2.33 cM. A subset of DArT markers was also mapped physically using a set of wheat-H. chilense chromosome addition lines. It allowed the unambiguous assignment of linkage groups to chromosomes. Four segregation distortion regions (SDRs) were found on the chromosomes 2H(ch), 3H(ch) and 5H(ch) in agreement with previous findings in barley. The new map improves the genome coverage of previous H. chilense maps. H. chilense-derived DArT markers will enable further genetic studies in ongoing projects on hybrid wheat, seed carotenoid content improvement or tritordeum breeding program. Besides, the genetic map reported here will be very useful as the basis to develop comparative genomics studies with barley and model species.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Marcadores Genéticos/genética , Hordeum/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ADN de Plantas/genética , Ligamiento Genético , Variación Genética , Genoma de Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA