Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(8): e2306470, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145962

RESUMEN

3D bioprinting has enabled the fabrication of tissue-mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity-modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion-induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion-based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion-based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion-based strategies to overcome current limitations in biofabrication.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Bioimpresión/métodos , Impresión Tridimensional
2.
Adv Healthc Mater ; : e2303325, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134346

RESUMEN

Microextrusion-based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic-printed constructs. Using printed collagen bioinks crosslinked either through physical self-assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero-shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15-50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non-granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths.

3.
Biomater Sci ; 11(23): 7598-7615, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37824082

RESUMEN

Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting.


Asunto(s)
Bioimpresión , Microgeles , Humanos , Hidrogeles/química , Materiales Biocompatibles/química , Impresión Tridimensional , Células Endoteliales de la Vena Umbilical Humana , Gelatina/química , Andamios del Tejido/química , Ingeniería de Tejidos
4.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066190

RESUMEN

While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physiochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.

5.
Biomater Adv ; 147: 213319, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758282

RESUMEN

Many established bioinks fulfill important requirements regarding fabrication standards and cytocompatibility. Current research focuses on development of functionalized bioinks with an improved support of tissue-specific cell differentiation. Many approaches primarily depend on decellularized extracellular matrices or blood components. In this study, we investigated the combination of a highly viscous alginate-methylcellulose (algMC) bioink with collagen-based artificial extracellular matrix (aECM) as a finely controllable and tailorable system composed of collagen type I (col) with and without chondroitin sulfate (CS) or sulfated hyaluronan (sHA). As an additional stabilizer, the polyphenol tannic acid (TA) was integrated into the inks. The assessment of rheological properties and printability as well as hydrogel microstructure revealed no adverse effect of the integrated components on the inks. Viability, adhesion, and proliferation of bioprinted immortalized human mesenchymal stem cells (hTERT-MSC) was improved indicating enhanced interaction with the designed microenvironment. Furthermore, chondrogenic matrix production (collagen type II and sulfated glycosaminoglycans) by primary human chondrocytes (hChon) was enhanced by aECM. Supplementing the inks with TA was required for these positive effects but caused cytotoxicity as soon as TA concentrations exceeded a certain amount. Thus, combining tailorable aECM with algMC and balanced TA addition proved to be a promising approach for promoting adhesion of immortalized stem cells and differentiation of chondrocytes in bioprinted scaffolds.


Asunto(s)
Alginatos , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/farmacología , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacología , Diferenciación Celular , Metilcelulosa/metabolismo , Metilcelulosa/farmacología , Taninos/metabolismo , Taninos/farmacología
6.
Biofabrication ; 15(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36735961

RESUMEN

Three-dimensional microextrusion bioprinting has attracted great interest for fabrication of hierarchically structured, functional tissue substitutes with spatially defined cell distribution. Despite considerable progress, several significant limitations remain such as a lack of suitable bioinks which combine favorable cell response with high shape fidelity. Therefore, in this work a novel bioink of alginate-methylcellulose (AlgMC) blend functionalized with egg white (EW) was developed with the aim of solving this limitation. In this regard, a stepwise strategy was proposed to improve and examine the cell response in low-viscosity alginate inks (3%, w/v) with different EW concentrations, and in high-viscosity inks after gradual methylcellulose addition for enhancing printability. The rheological properties and printability of these cell-responsive bioinks were characterized to obtain an optimized formulation eliciting balanced physicochemical and biological properties for fabrication of volumetric scaffolds. The bioprinted AlgMC + EW constructs exhibited excellent shape fidelity while encapsulated human mesenchymal stem cells showed high post-printing viability as well as adhesion and spreading within the matrix. In a proof-of-concept experiment, the impact of these EW-mediated effects on osteogenesis of bioprinted primary human pre-osteoblasts (hOB) was evaluated. Results confirmed a high viability of hOB (93.7 ± 0.15%) post-fabrication in an EW-supported AlgMC bioink allowing cell adhesion, proliferation and migration. EW even promoted the expression of osteogenic genes, coding for bone sialoprotein (integrin binding sialoprotein/bone sialoprotein precursor (IBSP)) and osteocalcin (BGLAP) on mRNA level. To demonstrate the suitability of the novel ink for future fabrication of multi-zonal bone substitutes, AlgMC + EW was successfully co-printed together with a pasty calcium phosphate bone cement biomaterial ink to achieve a partly mineralized 3D volumetric environment with good cell viability and spreading. Along with the EW-mediated positive effects within bioprinted AlgMC-based scaffolds, this highlighted the promising potential of this novel ink for biofabrication of bone tissue substitutes in clinically relevant dimensions.


Asunto(s)
Bioimpresión , Sustitutos de Huesos , Humanos , Andamios del Tejido/química , Metilcelulosa/química , Bioimpresión/métodos , Alginatos/química , Clara de Huevo , Sialoproteína de Unión a Integrina , Huesos , Tinta , Impresión Tridimensional , Ingeniería de Tejidos/métodos
7.
Acta Biomater ; 158: 308-323, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563775

RESUMEN

During extrusion printing of pasty biomaterials, internal geometries are mainly adjusted by positioning of straightly deposited strands which does not allow realization of spatially adaptable density gradients in x-, y- and z-direction for anisotropic scaffolds or anatomically shaped constructs. Herein, an alternative concept for printing patterns based on sinusoidal curves was evaluated using a clinically approved calcium phosphate cement (CPC). Infill density in scaffolds was adjusted by varying wavelength and amplitude of a sinus curve. Both wavelength and amplitude factors were defined by multitudes of the applied nozzle diameter. For CPC as a biomaterial ink in bone application, porosity, mechanical stiffness and biological response by seeded immortalized human mesenchymal stem cells - adhesion and pore bridging behavior - were investigated. The internal structure of a xyz-gradient scaffold was proven via X-ray based micro computed tomography (µCT). Silicone was used as a model material to investigate the impact of printing velocity and strand distance on the shape fidelity of the sinus pattern for soft matter printing. The impact of different sinus patterns on mechanical properties was assessed. Density and mechanical properties of CPC scaffolds were successfully adjusted without an adverse effect on adhesion and cell number development. In a proof-of-concept experiment, a sinus-adjusted density gradient in an anatomically shaped construct (human vertebral body) defined via clinical computed tomography (CT) data was demonstrated. This fills a technological gap for extrusion-based printing of freely adjustable, continuously guidable infill density gradients in all spatial directions. STATEMENT OF SIGNIFICANCE: 3D extrusion printing of biomaterials allows the generation of anatomically shaped, patient-specific implants or tissue engineering scaffolds. The density of such a structure is typically adjusted by the strand-to-strand distance of parallel, straight-meandered strands in each deposited layer. By printing in a sinusoidal pattern, design of density gradients is possible with a free, spatial resolution in x-, y- and z-direction. We demonstrated that porosity and mechanical properties can be freely adapted in this way without an adverse effect on cell adhesion. With the example of a CT dataset of a human spine, the anisotropic pattern of a vertebral body was resembled by this printing technique that can be translated to various patterns, materials and application.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Microtomografía por Rayos X , Andamios del Tejido/química , Materiales Biocompatibles/química , Porosidad , Impresión Tridimensional
8.
Adv Funct Mater ; 33(50)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38646474

RESUMEN

While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physicochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.

9.
J Funct Biomater ; 13(4)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36547529

RESUMEN

Cement augmentation of pedicle screws is one of the most promising approaches to enhance the anchoring of screws in the osteoporotic spine. To date, there is no ideal cement for pedicle screw augmentation. The purpose of this study was to investigate whether an injectable, bioactive, and degradable calcium sulfate/hydroxyapatite (CaS/HA) cement could increase the maximum pull-out force of pedicle screws in osteoporotic vertebrae. Herein, 17 osteoporotic thoracic and lumbar vertebrae were obtained from a single fresh-frozen human cadaver and instrumented with fenestrated pedicle screws. The right screw in each vertebra was augmented with CaS/HA cement and the un-augmented left side served as a paired control. The cement distribution, interdigitation ability, and cement leakage were evaluated using radiographs. Furthermore, pull-out testing was used to evaluate the immediate mechanical effect of CaS/HA augmentation on the pedicle screws. The CaS/HA cement presented good distribution and interdigitation ability without leakage into the spinal canal. Augmentation significantly enhanced the maximum pull-out force of the pedicle screw in which the augmented side was 39.0% higher than the pedicle-screw-alone side. Therefore, the novel biodegradable biphasic CaS/HA cement could be a promising material for pedicle screw augmentation in the osteoporotic spine.

10.
ACS Appl Mater Interfaces ; 14(43): 48397-48415, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36270624

RESUMEN

The availability of adapted phantoms mimicking different body parts is fundamental to establishing the stability and reliability of magnetic resonance imaging (MRI) methods. The primary purpose of such phantoms is the mimicking of physiologically relevant, contrast-creating relaxation times T1 and T2. For the head, frequently examined by MRI, an anthropomorphic design of brain phantoms would imply the discrimination of gray matter and white matter (WM) within defined, spatially distributed compartments. Multichannel extrusion printing allows the layer-by-layer fabrication of multiple pastelike materials in a spatially defined manner with a predefined shape. In this study, the advantages of this method are used to fabricate biphasic brain phantoms mimicking MR relaxation times and anthropomorphic geometry. The printable ink was based on purely naturally derived polymers: alginate as a calcium-cross-linkable gelling agent, agarose, ι-carrageenan, and GdCl3 in different concentrations (0-280 µmol kg-1) as the paramagnetic component. The suggested inks (e.g., 3Alg-1Agar-6Car) fulfilled the requirements of viscoelastic behavior and printability of large constructs (>150 mL). The microstructure and distribution of GdCl3 were assessed by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX). In closely monitored steps of technological development and characterization, from monophasic and biphasic samples as printable inks and cross-linked gels, we describe the construction of large-scale phantom models whose relaxation times were characterized and checked for stability over time.


Asunto(s)
Alginatos , Encéfalo , Carragenina , Imagen por Resonancia Magnética , Fantasmas de Imagen , Impresión Tridimensional , Sefarosa , Alginatos/química , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Carragenina/química , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Sefarosa/química , Microscopía Electrónica de Rastreo , Reactivos de Enlaces Cruzados
11.
Eur J Cell Biol ; 101(3): 151256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35839696

RESUMEN

An in vitro bone triple culture involving human primary osteoblasts, osteocytes and osteoclasts enables the investigation of bone healing factors, drugs or biomaterials in a model system for native bone tissue. The present study analyses the impact of Sr2+ as well as hypoxic cultivation (5% O2 content or chemically induced by Co2+) on bone cells. The three cell types were cultivated together in the presence of 100 µM Sr2+, hypoxic conditions or in the presence of 75 µM Co2+. After cultivation the cell types were separated and analysed on mRNA and protein level individually. In response to Sr2+ osteoblasts showed a downregulation of IBSP expression and a stimulation of ALP activity. Osteocyte gene marker expression of PDPN, MEPE, RANKL, OPG, osteocalcin and likewise the amount of secreted osteocalcin was reduced in the presence of Sr2+. Activity of osteoclast-specific enzymes TRAP and CAII was enhanced compared to the Sr2+ free control. Hypoxic conditions induced by both 5% O2 or a Co2+ treatment led to decreased DNA content of all bone cells and downregulated expression of osteoblast markers ALPL and IBSP as well as osteocyte markers PDPN, RANKL and OPG. In addition, Co2+ induced hypoxia decreased gene and protein expression of osteocalcin in osteocytes. In response to the Co2+ treatment, the TRAP gene expression and activity was increased. This study is the first to analyse the effects of Sr2+ or hypoxia on triple cultures with primary human bone cells. The investigated in vitro bone model might be suitable to reduce animal experiments in early stages of biomaterial and drug development.


Asunto(s)
Osteoclastos , Osteocitos , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Hipoxia/metabolismo , Osteoblastos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteocalcina/farmacología , Osteoclastos/metabolismo , Osteocitos/metabolismo
12.
J Funct Biomater ; 13(2)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35735931

RESUMEN

The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process. The hybrid CPC+PCL scaffolds with varying CPC strand distance (800-2000 µm) and integrated PCL fibers featured a strong CPC to PCL interface. While no adverse effect on mechanical stiffness was detected by the PCL-supported scaffold design; the microfiber integration led to an improved integrity. The pore distance between CPC strands was gradually increased to identify at which critical CPC porosity the microfibers would have a significant impact on pore bridging behavior and growth of seeded cells. At a CPC strand distance of 1600 µm, after 2 weeks of cultivation, the incorporation of PCL fibers led to pore coverage by a human mesenchymal stem cell line and an elevated proliferation level of murine pre-osteoblasts. The integrated fabrication approach allows versatile design adjustments on different levels.

13.
Biomater Adv ; 134: 112692, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35581081

RESUMEN

In vitro triple cultures of human primary osteoblasts, osteocytes and osteoclasts can potentially help to analyze the effect of drugs and degradation products of biomaterials as a model for native bone tissue. In the present study, degradation products of Magnesium (Mg), which has been successfully applied in the biomedical field, were studied with respect to their impact on bone cell morphology and differentiation both in osteocyte single cultures and in the triple culture model. Fluorescence microscopic and gene expression analysis, analysis of osteoclast- and osteoblast-specific enzyme activities as well as osteocalcin protein expression were performed separately for the three cell types after cultivation in triple culture in the presence of extracts, containing 5 and 10 mM Mg2+. All three cell species were viable in the presence of the extracts and did not show morphological changes compared to the Mg-free control. Osteoblasts and osteoclasts did not show significant changes in gene expression of ALPL, BSPII, osteocalcin, TRAP, CTSK and CA2. Likewise on protein level, no significant changes in ALP-, TRAP-, CTSK- and CAII activities were detected. Osteocytes showed a significant downregulation of MEPE, which codes for a protein playing an important role in regulation of phosphate homeostasis by osteocytes. This study is the first to analyze the effects of Mg degradation products on primary osteocytes in vitro, both in single and triple culture. Even if promoting effects on the three examined bone cell species were not found in the applied triple culture setup, it was shown, that Mg degradation products do not interfere with the activity of osteoblasts, osteoclasts and osteocytes in vitro.


Asunto(s)
Magnesio , Osteocitos , Células Cultivadas , Humanos , Magnesio/farmacología , Osteoblastos , Osteocalcina/genética , Osteoclastos
14.
J Mech Behav Biomed Mater ; 131: 105253, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490511

RESUMEN

Mechanical stimulation of bioprinted constructs can enhance the differentiation of cells within these scaffolds, such as driving chondrocytes towards cartilage tissue substitutes. In this study, a holistic approach is presented for designing and engineering a material-specific device based on a magnetic field setup using the Maxwell configuration for a touchless cyclic magnetic stimulation of (bioprinted) hydrogel scaffolds containing magnetic microparticles. We describe the entire development process, from the design of the magnetic field to the construction of the bioreactor and provide an evaluation of the calculation. Finally, an analysis of the distribution and orientation of the particles within the hydrogels and a cytocompatibility test after applying the intended stimulation regime were conducted. As a proof-of-principle, a model system in the shape of a cylindrical bending beam consisting of the established magnetisable bioink based on alginate, methylcellulose and magnetite microparticles (algMC + mag), was used instead of 3D printed, macroporous scaffolds of this material. Requirements for the dimensioning of the force, such as the Young's modulus, were determined experimentally. The magnetic field was calculated using the software Finite Element Method Magnetics (FEMM). The cyclic stimulation of the samples was performed over 14 days with a duration of 3 h per day. The aim was to achieve an elongation of up to 10%. The homogeneous particle distribution in stimulated and non-stimulated samples was proven via µCT and digital image processing (DIP). Even after applying a static magnetic field over 30 min, no structure formation such as chains or agglomeration of the magnetic particles were observed. The deformation behaviour defined as a shifted position of the neutral fibre (centre line of an object) during stimulation was measured via µCT and analysed using DIP. From these data, an elongation of approx. 9% was calculated for day 14. This elongation was achieved for both the stimulated samples and the control group without stimulation, which corresponds to the theoretically calculated value. The cytocompatibility of the bioink, scaffold environment and stimulation approach was demonstrated for bioprinted scaffolds with embedded human mesenchymal stem cells and chondrocytes. These findings proved the suitability and versatility of the bioreactor and the presented approach for stimulation experiments.


Asunto(s)
Hidrogeles , Andamios del Tejido , Reactores Biológicos , Humanos , Fenómenos Magnéticos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
15.
Biofabrication ; 14(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34933296

RESUMEN

One of the key challenges in osteochondral tissue engineering is to define specified zones with varying material properties, cell types and biochemical factors supporting locally adjusted differentiation into the osteogenic and chondrogenic lineage, respectively. Herein, extrusion-based core-shell bioprinting is introduced as a potent tool allowing a spatially defined delivery of cell types and differentiation factors TGF-ß3 and BMP-2 in separated compartments of hydrogel strands, and, therefore, a local supply of matching factors for chondrocytes and osteoblasts. Ink development was based on blends of alginate and methylcellulose, in combination with varying concentrations of the nanoclay Laponite whose high affinity binding capacity for various molecules was exploited. Release kinetics of model molecules was successfully tuned by Laponite addition. Core-shell bioprinting was proven to generate well-oriented compartments within one strand as monitored by optical coherence tomography in a non-invasive manner. Chondrocytes and osteoblasts were applied each in the shell while the respective differentiation factors (TGF-ß3, BMP-2) were provided by a Laponite-supported core serving as central factor depot within the strand, allowing directed differentiation of cells in close contact to the core. Experiments with bi-zonal constructs, comprising an osteogenic and a chondrogenic zone, revealed that the local delivery of the factors from the core reduces effects of these factors on the cells in the other scaffold zone. These observations prove the general suitability of the suggested system for co-differentiation of different cell types within a zonal construct.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Diferenciación Celular , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Factor de Crecimiento Transformador beta3/farmacología
16.
Sci Rep ; 11(1): 5130, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664366

RESUMEN

With the aim of understanding and recapitulating cellular interactions of hepatocytes in their physiological microenvironment and to generate an artificial 3D in vitro model, a co-culture system using 3D extrusion bioprinting was developed. A bioink based on alginate and methylcellulose (algMC) was first shown to be suitable for bioprinting of hepatocytes; the addition of Matrigel to algMC enhanced proliferation and morphology of them in monophasic scaffolds. Towards a more complex system that allows studying cellular interactions, we applied core-shell bioprinting to establish tailored 3D co-culture models for hepatocytes. The bioinks were specifically functionalized with natural matrix components (based on human plasma, fibrin or Matrigel) and used to co-print fibroblasts and hepatocytes in a spatially defined, coaxial manner. Fibroblasts acted as supportive cells for co-cultured hepatocytes, stimulating the expression of certain biomarkers of hepatocytes like albumin. Furthermore, matrix functionalization positively influenced both cell types in their respective compartments by enhancing their adhesion, viability, proliferation and function. In conclusion, we established a functional co-culture model with independently tunable compartments for different cell types via core-shell bioprinting. This provides the basis for more complex in vitro models allowing co-cultivation of hepatocytes with other liver-specific cell types to closely resemble the liver microenvironment.


Asunto(s)
Bioimpresión , Hepatocitos/ultraestructura , Impresión Tridimensional , Ingeniería de Tejidos , Alginatos/química , Técnicas de Cocultivo , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Fibroblastos/ultraestructura , Hepatocitos/química , Humanos , Andamios del Tejido
17.
ACS Biomater Sci Eng ; 7(2): 648-662, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33507748

RESUMEN

Mechanical stimulation of cells embedded in scaffolds is known to increase the cellular performance toward osteogenic or chondrogenic differentiation and tissue development. Three-dimensional bioplotting of magnetically deformable scaffolds enables the spatially defined distribution of magnetically inducible scaffold regions. In this study, a magnetic bioink based on alginate (alg, 3%) and methylcellulose (MC, 9%) with incorporated magnetite microparticles (25% w/w) was developed and characterized. The size and shape of particles were monitored via scanning electron microscopy and X-ray micro-computed tomography. Shear-thinning properties of the algMC ink were maintained after the addition of different concentrations of magnetite microparticles to the ink. Its viscosity proportionally increased with the added amount of magnetite, and so did the level of saturation magnetization as determined via vibrating sample magnetometry. The printability and shape fidelity of various shapes were evaluated, so that the final composition of algMC + 25% w/w magnetite was chosen. With application of this ink, cytocompatibility was proven in indirect cell culture and bioplotting experiments using a human mesenchymal stem cell line. Toward the deformation of cell-laden scaffolds to support cell differentiation in the future, radiography allowed the real-time monitoring of magnetically induced deformation of scaffolds of different pore architectures and scaffold orientations inside the magnetic field. Varying the strand distance and scaffold design will allow fine-tuning the degree of deformation in stimulatory experiments.


Asunto(s)
Bioimpresión , Alginatos , Humanos , Impresión Tridimensional , Andamios del Tejido , Microtomografía por Rayos X
18.
Sci Rep ; 10(1): 8277, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427838

RESUMEN

For the generation of multi-layered full thickness osteochondral tissue substitutes with an individual geometry based on clinical imaging data, combined extrusion-based 3D printing (3D plotting) of a bioink laden with primary chondrocytes and a mineralized biomaterial phase was introduced. A pasty calcium phosphate cement (CPC) and a bioink based on alginate-methylcellulose (algMC) - both are biocompatible and allow 3D plotting with high shape fidelity - were applied in monophasic and combinatory design to recreate osteochondral tissue layers. The capability of cells reacting to chondrogenic biochemical stimuli inside the algMC-based 3D hydrogel matrix was assessed. Towards combined osteochondral constructs, the chondrogenic fate in the presence of CPC in co-fabricated and biphasic mineralized pattern was evaluated. Majority of expanded and algMC-encapsulated cells survived the plotting process and the cultivation period, and were able to undergo redifferentiation in the provided environment to produce their respective extracellular matrix (ECM) components (i.e. sulphated glycosaminoglycans, collagen type II), examined after 3 weeks. The presence of a mineralized zone as located in the physiological calcified cartilage region suspected to interfere with chondrogenesis, was found to support chondrogenic ECM production by altering the ionic concentrations of calcium and phosphorus in in vitro culture conditions.


Asunto(s)
Bioimpresión/métodos , Sustitutos de Huesos/química , Fosfatos de Calcio/química , Condrogénesis , Ingeniería de Tejidos/métodos , Anciano , Alginatos/química , Supervivencia Celular , Femenino , Humanos , Masculino , Metilcelulosa/química , Persona de Mediana Edad , Fenotipo , Impresión Tridimensional , Andamios del Tejido
19.
Artículo en Inglés | MEDLINE | ID: mdl-32269989

RESUMEN

One of the most common hereditary craniofacial anomalies in humans are cleft lip and cleft alveolar bone with or without cleft palate. Current clinical practice, the augmentation of the persisting alveolar bone defect by using autologous bone grafts, has considerable disadvantages motivating to an intensive search for alternatives. We developed a novel therapy concept based on 3D printing of biodegradable calcium phosphate-based materials and integration of osteogenic cells allowing fabrication of patient-specific, tissue-engineered bone grafts. Objective of the present study was the in vivo evaluation of implants in a rat alveolar cleft model. Scaffolds were designed according to the defect's geometry with two different pore designs (60° and 30° rotated layer orientation) and produced by extrusion-based 3D plotting of a pasty calcium phosphate cement. The scaffolds filled into the artificial bone defect in the palate of adult Lewis rats, showing a good support. Half of the scaffolds were colonized with rat mesenchymal stromal cells (rMSC) prior to implantation. After 6 and 12 weeks, remaining defect width and bone formation were quantified histologically and by microCT. The results revealed excellent osteoconductive properties of the scaffolds, a significant influence of the pore geometry (60° > 30°), but no enhanced defect healing by pre-colonization with rMSC.

20.
Biofabrication ; 12(2): 025022, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32050179

RESUMEN

Systematic analysis of the extrusion process in 3D bioprinting is mandatory for process optimization concerning production speed, shape fidelity of the 3D construct and cell viability. In this study, we applied numerical and analytical modeling to describe the fluid flow inside the printing head based on a Herschel-Bulkley model. The presented analytical calculation method nicely reproduces the results of Computational Fluid Dynamics simulation concerning pressure drop over the printing head and maximal shear parameters at the outlet. An approach with dimensionless flow parameter enables the user to adapt rheological characteristics of a bioink, the printing pressure and needle diameter with regard to processing time, shear sensitivity of the integrated cells, shape fidelity and strand dimension. Bioinks consist of a blend of polymers and cells, which lead to a complex fluid behavior. In the present study, a bioink containing alginate, methylcellulose and agarose (AMA) was used as experimental model to compare the calculated with the experimental pressure gradient. With cultures of an immortalized human mesenchymal stem cell line and plant cells (basil) it was tested how cells influence the flow and how mechanical forces inside the printing needle affect cell viability. Influences on both sides increased with cell (aggregation) size as well as a less spherical shape. This study contributes to a systematic description of the extrusion-based bioprinting process and introduces a general strategy for process design, transferable to other bioinks.


Asunto(s)
Bioimpresión/métodos , Tinta , Impresión Tridimensional , Alginatos/química , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Metilcelulosa/química , Ocimum basilicum/citología , Células Vegetales/fisiología , Reología , Sefarosa/química , Resistencia al Corte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...