Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 291(8): 1813-1829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335062

RESUMEN

Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Humanos , ADN Primasa/genética , ADN Primasa/metabolismo , Microscopía por Crioelectrón , ADN Polimerasa I/genética , ARN , Replicación del ADN
2.
Protein Sci ; 31(2): 333-344, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719824

RESUMEN

The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the causative agent of coronavirus disease 2019 (COVID-19)-are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS-CoV-2. The DNA polymerase α (Pol α)-primase complex or primosome-responsible for initiating DNA synthesis during genomic duplication-was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS-CoV-2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo-electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS-CoV-2 interferes with Pol α's putative role in the immune response during the viral infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas no Estructurales Virales , Microscopía por Crioelectrón , ADN Polimerasa I , ADN Primasa , Humanos , Proteómica , Proteínas no Estructurales Virales/genética , Factores de Virulencia
3.
EMBO J ; 39(18): e104185, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32705708

RESUMEN

Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , G-Cuádruplex , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , ARN Helicasas DEAD-box/genética , ADN Helicasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Dominios Proteicos
5.
ACS Chem Biol ; 14(9): 1904-1912, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31479243

RESUMEN

Nucleoside analogues are widely used in clinical practice as chemotherapy drugs. Arabinose nucleoside derivatives such as fludarabine are effective in the treatment of patients with acute and chronic leukemias and non-Hodgkin's lymphomas. Although nucleoside analogues are generally known to function by inhibiting DNA synthesis in rapidly proliferating cells, the identity of their in vivo targets and mechanism of action are often not known in molecular detail. Here we provide a structural basis for arabinose nucleotide-mediated inhibition of human primase, the DNA-dependent RNA polymerase responsible for initiation of DNA synthesis in DNA replication. Our data suggest ways in which the chemical structure of fludarabine could be modified to improve its specificity and affinity toward primase, possibly leading to less toxic and more effective therapeutic agents.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Antineoplásicos/química , Antivirales/química , ADN Primasa/antagonistas & inhibidores , Vidarabina/análogos & derivados , Adenosina Trifosfato/metabolismo , Antineoplásicos/metabolismo , Antivirales/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN Primasa/química , ADN Primasa/metabolismo , Pruebas de Enzimas , Humanos , Unión Proteica , Vidarabina/química , Vidarabina/metabolismo
6.
Open Biol ; 7(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29167311

RESUMEN

A dynamic multi-protein assembly known as the replisome is responsible for DNA synthesis in eukaryotic cells. In yeast, the hub protein Ctf4 bridges DNA helicase and DNA polymerase and recruits factors with roles in metabolic processes coupled to DNA replication. An important question in DNA replication is the extent to which the molecular architecture of the replisome is conserved between yeast and higher eukaryotes. Here, we describe the biochemical basis for the interaction of the human CTF4-orthologue AND-1 with DNA polymerase α (Pol α)/primase, the replicative polymerase that initiates DNA synthesis. AND-1 has maintained the trimeric structure of yeast Ctf4, driven by its conserved SepB domain. However, the primary interaction of AND-1 with Pol α/primase is mediated by its C-terminal HMG box, unique to mammalian AND-1, which binds the B subunit, at the same site targeted by the SV40 T-antigen for viral replication. In addition, we report a novel DNA-binding activity in AND-1, which might promote the correct positioning of Pol α/primase on the lagging-strand template at the replication fork. Our findings provide a biochemical basis for the specific interaction between two critical components of the human replisome, and indicate that important principles of replisome architecture have changed significantly in evolution.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Dominios HMG-Box , Sitios de Unión , Biología Computacional , Humanos , Modelos Moleculares , Unión Proteica
7.
Nat Commun ; 8(1): 1718, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29167441

RESUMEN

DNA replication depends on primase, the specialised polymerase responsible for synthesis of the RNA primers that are elongated by the replicative DNA polymerases. In eukaryotic and archaeal replication, primase is a heterodimer of two subunits, PriS and PriL. Recently, a third primase subunit named PriX was identified in the archaeon Sulfolobus solfataricus. PriX is essential for primer synthesis and is structurally related to the Fe-S cluster domain of eukaryotic PriL. Here we show that PriX contains a nucleotide-binding site required for primer synthesis, and demonstrate equivalence of nucleotide-binding residues in PriX with eukaryotic PriL residues that are known to be important for primer synthesis. A primase chimera, where PriX is fused to a truncated version of PriL lacking the Fe-S cluster domain retains wild-type levels of primer synthesis. Our evidence shows that PriX has replaced PriL as the subunit that endows primase with the unique ability to initiate nucleic acid synthesis. Importantly, our findings reveal that the Fe-S cluster is not required for primer synthesis.

8.
Nucleic Acids Res ; 45(9): 5555-5563, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28334766

RESUMEN

Human Timeless is involved in replication fork stabilization, S-phase checkpoint activation and establishment of sister chromatid cohesion. In the cell, Timeless forms a constitutive heterodimeric complex with Tipin. Here we present the 1.85 Å crystal structure of a large N-terminal segment of human Timeless, spanning amino acids 1-463, and we show that this region of human Timeless harbours a partial binding site for Tipin. Furthermore, we identify minimal regions of the two proteins that are required for the formation of a stable Timeless-Tipin complex and provide evidence that the Timeless-Tipin interaction is based on a composite binding interface comprising different domains of Timeless.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fenómenos Biofísicos , Reactivos de Enlaces Cruzados/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN , Humanos , Espectrometría de Masas , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Homología Estructural de Proteína
9.
Mol Cell ; 63(3): 385-96, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27397685

RESUMEN

Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation.


Asunto(s)
Cromosomas Fúngicos/enzimología , ADN Helicasas/metabolismo , ADN de Hongos/biosíntesis , ADN Ribosómico/biosíntesis , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Cromosomas Fúngicos/genética , ADN Helicasas/genética , ADN Polimerasa I/metabolismo , ADN de Hongos/genética , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Dosificación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Complejos Multiproteicos , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
10.
Nat Commun ; 6: 8163, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26348592

RESUMEN

In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.


Asunto(s)
Proteínas Arqueales/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Sulfolobus acidocaldarius/genética , Ubiquitinas/genética , Proteínas Arqueales/metabolismo , Cromatografía en Gel , Cromatografía Liquida , Dicroismo Circular , Cristalografía por Rayos X , Espectrometría de Masas , Microscopía Electrónica , Complejo de la Endopetidasa Proteasomal/ultraestructura , Proteolisis , Sulfolobus acidocaldarius/metabolismo , Ubiquitinas/metabolismo
11.
Nature ; 510(7504): 293-297, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24805245

RESUMEN

Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a ß-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.


Asunto(s)
ADN Helicasas/metabolismo , ADN Polimerasa I/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , ADN Helicasas/química , ADN Helicasas/ultraestructura , ADN Polimerasa I/química , ADN Polimerasa I/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Microscopía Electrónica , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1166-72, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699660

RESUMEN

Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of ß-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.


Asunto(s)
Escherichia coli/enzimología , Glutamato Descarboxilasa/química , Activación Enzimática , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Treonina/genética , Treonina/metabolismo
13.
Elife ; 2: e00482, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23599895

RESUMEN

The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI:http://dx.doi.org/10.7554/eLife.00482.001.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN de Hongos/biosíntesis , Saccharomyces cerevisiae/genética , Dominio Catalítico , ADN de Hongos/química , Modelos Moleculares , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/enzimología
14.
J Biol Chem ; 287(28): 23740-7, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22593576

RESUMEN

The DNA polymerase α-primase complex forms an essential part of the eukaryotic replisome. The catalytic subunits of primase and pol α synthesize composite RNA-DNA primers that initiate the leading and lagging DNA strands at replication forks. The physical basis and physiological significance of tethering primase to the eukaryotic replisome via pol α remain poorly characterized. We have identified a short conserved motif at the extreme C terminus of pol α that is critical for interaction of the yeast ortholog pol1 with primase. We show that truncation of the C-terminal residues 1452-1468 of Pol1 abrogates the interaction with the primase, as does mutation to alanine of the invariant amino acid Phe(1463). Conversely, a pol1 peptide spanning the last 16 residues binds primase with high affinity, and the equivalent peptide from human Pol α binds primase in an analogous fashion. These in vitro data are mirrored by experiments in yeast cells, as primase does not interact in cell extracts with pol1 that either terminates at residue 1452 or has the F1463A mutation. The ability to disrupt the association between primase and pol α allowed us to assess the physiological significance of primase being tethered to the eukaryotic replisome in this way. We find that the F1463A mutation in Pol1 renders yeast cells dependent on the S phase checkpoint, whereas truncation of Pol1 at amino acid 1452 blocks yeast cell proliferation. These findings indicate that tethering of primase to the replisome by pol α is critical for the normal action of DNA replication forks in eukaryotic cells.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Replicación del ADN/genética , Células Eucariotas/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Secuencia Conservada/genética , ADN Polimerasa I/química , ADN Polimerasa I/genética , ADN Primasa/química , ADN Primasa/genética , Humanos , Immunoblotting , Inmunoprecipitación , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
15.
Artículo en Inglés | MEDLINE | ID: mdl-22505409

RESUMEN

The crystal structure of the Asn72Ala site-directed mutant of Escherichia coli aspartate α-decarboxylase (ADC) has been determined at 1.7 Å resolution. The refined structure is consistent with the presence of a hydrolysis product serine in the active site in place of the pyruvoyl group required for catalysis, which suggests that the role of Asn72 is to protect the ester formed during ADC activation from hydrolysis. In previously determined structures of activated ADC, including the wild type and other site-directed mutants, the C-terminal region of the protein is disordered, but in the Asn72Ala mutant these residues are ordered owing to an interaction with the active site of the neighbouring symmetry-related multimer.


Asunto(s)
Escherichia coli/enzimología , Glutamato Descarboxilasa/química , Activación Enzimática , Glutamato Descarboxilasa/genética , Modelos Moleculares , Mutación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
16.
Mol Cell ; 34(6): 735-45, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19446481

RESUMEN

Rad9, Rad1, and Hus1 form a heterotrimeric complex (9-1-1) that is loaded onto DNA at sites of DNA damage. DNA-loaded 9-1-1 activates signaling through the Chk1 arm of the DNA damage checkpoint response via recruitment and stimulation of ATR. Additionally, 9-1-1 may play a direct role in facilitating DNA damage repair via interaction with a number of DNA repair enzymes. We have now determined the crystal structure of the human 9-1-1 complex, revealing a toroidal structure with a similar architecture to the homotrimeric PCNA DNA-binding clamp. The structure explains the formation of a unique heterotrimeric arrangement and reveals significant differences among the three subunits in the sites implicated in binding to the clamp loader and to ligand proteins. Biochemical analysis reveals a single repair enzyme-binding site on 9-1-1 that can be blocked competitively by the PCNA-binding cell-cycle regulator p21(cip1/waf1).


Asunto(s)
Proteínas de Ciclo Celular/química , Daño del ADN , Exonucleasas/química , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Reparación del ADN , Evolución Molecular , Exonucleasas/genética , Exonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Humanos , Modelos Moleculares , Filogenia , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
17.
Genes Dev ; 22(15): 2034-47, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18676809

RESUMEN

Schizosaccharomyces pombe Crb2 is a checkpoint mediator required for the cellular response to DNA damage. Like human 53BP1 and Saccharomyces cerevisiae Rad9 it contains Tudor(2) and BRCT(2) domains. Crb2-Tudor(2) domain interacts with methylated H4K20 and is required for recruitment to DNA dsDNA breaks. The BRCT(2) domain is required for dimerization, but its precise role in DNA damage repair and checkpoint signaling is unclear. The crystal structure of the Crb2-BRCT(2) domain, alone and in complex with a phosphorylated H2A.1 peptide, reveals the structural basis for dimerization and direct interaction with gamma-H2A.1 in ionizing radiation-induced foci (IRIF). Mutational analysis in vitro confirms the functional role of key residues and allows the generation of mutants in which dimerization and phosphopeptide binding are separately disrupted. Phenotypic analysis of these in vivo reveals distinct roles in the DNA damage response. Dimerization mutants are genotoxin sensitive and defective in checkpoint signaling, Chk1 phosphorylation, and Crb2 IRIF formation, while phosphopeptide-binding mutants are only slightly sensitive to IR, have extended checkpoint delays, phosphorylate Chk1, and form Crb2 IRIF. However, disrupting phosphopeptide binding slows formation of ssDNA-binding protein (Rpa1/Rad11) foci and reduces levels of Rad22(Rad52) recombination foci, indicating a DNA repair defect.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Reparación del ADN , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Camptotecina/farmacología , Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Cristalografía por Rayos X , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Dimerización , Relación Dosis-Respuesta en la Radiación , Histidina/metabolismo , Hidroxiurea/farmacología , Rayos Infrarrojos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/aislamiento & purificación , Estructura Terciaria de Proteína , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Homología de Secuencia de Aminoácido , Transducción de Señal/fisiología , Rayos Ultravioleta
18.
Nucleic Acids Res ; 34(16): 4515-26, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16945955

RESUMEN

The archaeal/eukaryotic proliferating cell nuclear antigen (PCNA) toroidal clamp interacts with a host of DNA modifying enzymes, providing a stable anchorage and enhancing their respective processivities. Given the broad range of enzymes with which PCNA has been shown to interact, relatively little is known about the mode of assembly of functionally meaningful combinations of enzymes on the PCNA clamp. We have determined the X-ray crystal structure of the Sulfolobus solfataricus PCNA1-PCNA2 heterodimer, bound to a single copy of the flap endonuclease FEN1 at 2.9 A resolution. We demonstrate the specificity of interaction of the PCNA subunits to form the PCNA1-PCNA2-PCNA3 heterotrimer, as well as providing a rationale for the specific interaction of the C-terminal PIP-box motif of FEN1 for the PCNA1 subunit. The structure explains the specificity of the individual archaeal PCNA subunits for selected repair enzyme 'clients', and provides insights into the co-ordinated assembly of sequential enzymatic steps in PCNA-scaffolded DNA repair cascades.


Asunto(s)
Proteínas Arqueales/química , Endonucleasas de ADN Solapado/química , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/química , Sulfolobus solfataricus/enzimología , Proteínas Arqueales/genética , Cristalografía por Rayos X , Análisis Mutacional de ADN , Dimerización , Antígeno Nuclear de Célula en Proliferación/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética
19.
EMBO J ; 22(23): 6193-204, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14633979

RESUMEN

Aspartate decarboxylase, which is translated as a pro-protein, undergoes intramolecular self-cleavage at Gly24-Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24-->Ser, His11-->Ala, Ser25-->Ala, Ser25-->Cys and Ser25-->Thr mutants. Comparative analyses of the cleavage site reveal specific conformational constraints that govern self-processing and demonstrate that considerable rearrangement must occur. We suggest that Thr57 Ogamma and a water molecule form an 'oxyanion hole' that likely stabilizes the proposed oxyoxazolidine intermediate. Thr57 and this water molecule are probable catalytic residues able to support acid-base catalysis. The conformational freedom in the loop preceding the cleavage site appears to play a determining role in the reaction. The molecular mechanism of self-processing, presented here, emphasizes the importance of stabilization of the oxyoxazolidine intermediate. Comparison of the structural features shows significant similarity to those in other self-processing systems, and suggests that models of the cleavage site of such enzymes based on Ser-->Ala or Ser-->Thr mutants alone may lead to erroneous interpretations of the mechanism.


Asunto(s)
Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/metabolismo , Alanina , Sustitución de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA