Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(50): 58663-58672, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38064280

RESUMEN

Diketopyrrolopyrrole (DPP)-based conjugated copolymers are important organic semiconductors for applications in high-efficiency organic thin-film transistors (OTFTs). However, the direct application of these polymers with rigid backbones in stretchable devices has limitations. In this study, we designed and synthesized three kinds of DPPBT-based copolymers, DPPBT-A1, DPPBT-A3, and DPPBT-A5, which have amide-coupled alkylene conjugation breakers capable of hydrogen bonding. Linkers with different segment lengths were copolymerized with DPP and bithiophene (BT) backbone units. A DPP-based copolymer with alternating BT moieties, DPPBT, was synthesized as a reference fully conjugated copolymer. The synthesized polymers with freely rotational backbone linkers have sufficient flexibility to develop ordered phase domains, even in thin films, in comparison to the reference copolymer. However, the introduction of the conjugation breakers, which disconnect the intramolecular π-π overlapping, tends to decrease the hole mobility (µ) from 0.76 to 0.20 cm2 V-1 s-1 in the corresponding OTFT devices. The TFT fabricated using DPPBT-A3 showed a mobility of 0.50 cm2 V-1 s-1, and the mobility value did not show a significant change even when elongated by more than 50%. Therefore, the molecular design strategy of introducing amide-coupled alkylene conjugation breakers into conjugated polymer chains can contribute significantly to the development of high-mobility stretchable conjugated polymers in future.

2.
ACS Appl Mater Interfaces ; 10(22): 18974-18983, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29761694

RESUMEN

We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm2, demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...