RESUMEN
Chemical datasets describing the occurrence of both inorganic and organic contaminants along the Doce River Basin (DRB) could provide a better understanding of the potential impacts of a major mining dam collapse disaster combined to additional chronic sources of contamination. This data article presents datasets of main contaminants detected in the water and sediments sampled four years after the mining dam collapse in the DRB. A summary table of data obtained in the literature is also provided to allow a comparison of the variation of chemicals before, right after in 2015/2016 and after the event (current data). In addition, there are also provided physical-chemical parameters of water and sediments of different sampling sites, which could support the investigation of chemicals distribution. For this purpose, triplicate samples of water and sediment were obtained in 8 sampling sites along the DRB during wet and dry seasons of 2019, totalizing 48 samples of each environmental matrix. The sampling sites were strategically selected according to their different main sources of pollution along the river. Concentrations of trace elements and organic contaminants (polycyclic aromatic hydrocarbons, and pyrethroids) were determined in samples of water and sediments by inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography - mass spectrometry GC-MS, respectively. Main data obtained in the literature consisted in published reports from environmental agencies (IGAM) and private companies (RENOVA) as well as journal articles. The datasets provided may be useful to the stakeholders, which include scientific community, authorities and public agencies, and private companies interested to understand the impacts of the contaminants introduced along the River Basin four years after the environmental disaster.
RESUMEN
Korean rose bitterling (Rhodeus uyekii) is a freshwater fish endemic to Korea. Natural populations of this species have experienced severe declines as a result of habitat fragmentation and water pollution. To conserve and restore R. uyekii, the genetic diversity of this species needs to be assessed at the population level. Eighteen novel polymorphic microsatellite loci for R. uyekii were developed using an enriched partial genomic library. Polymorphisms at these loci were studied in 150 individuals collected from three populations. The number of alleles at each locus ranged from 3 to 47 (mean = 17.1). Within the populations, the observed heterozygosity ranged from 0.032 to 1.000, expected heterozygosity from 0.082 to 0.967, and polymorphism information content from 0.078 to 0.950. Six loci showed significant deviation from Hardy-Weinberg equilibrium after Bonferroni's correction, and no significant linkage disequilibrium was detected between most locus pairs, except in three cases. These highly informative microsatellite markers should be useful for genetic population structure analyses of R. uyekii.
Asunto(s)
Peces/genética , Biblioteca Genómica , Repeticiones de Microsatélite , Alelos , Animales , Genotipo , Polimorfismo GenéticoRESUMEN
Verbena brasiliensis Vell., commonly known as Brazilian verbena, is native to South America and has been introduced into North America, coastal Europe, southern Africa, and Australasia. Though partly cultivated for garden use, it is invasive in riverine areas and also on roadsides, forest margins, pastures, and waste areas (4). In Korea, this plant was first reported in 1998 in Jeju Island and has become widely naturalized by replacing indigenous plants and disrupting native ecosystems in most of southern part of Korea (3). Since 2009, powdery mildew on Brazilian verbena has been consistently found in several locations of Busan City, Korea. Symptoms appeared as circular to irregular white patches, which subsequently showed abundant hyphal growth on both sides of the leaves and on stems. High disease severity caused poor growth of the plants, resulting in premature senescence and reduced flowering. Specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 140 to 190 × 11 to 12.5 µm and produced 2 to 7 immature conidia in chains with a crenate outline. Foot-cells in conidiophores were straight, cylindric, relatively short, 50 to 65 µm long, and constricted at the very base of branching point from the hypha. Conidia were hyaline, ellipsoid to ovate, measured 28 to 38 × 18.5 to 22 µm (length/width ratio of 1.2 to 1.8), and contained distinct fibrosin bodies. Germ tubes were produced from the lateral position of conidia. No chasmothecia were observed. These structures are typical of the powdery mildew Euoidium anamorph of the genus Podosphaera. The morphological characteristics and measurements were consistent with those of P. xanthii (Castagne) U. Braun & Shishkoff (1). To confirm the identity, the complete internal transcribed spacer (ITS) region of rDNA of the isolate KUS-F27220 was amplified with primers ITS1/ITS4, and sequenced. The resulting 477-bp sequence was deposited in GenBank (Accession No. KJ472787). A GenBank BLAST search of this sequence revealed 100% identity with Podosphaera sp. on V. bonariensis and V.× hybrida from Japan (AB462804 and AB040347). The Podosphaera sp. isolates listed above are now placed in P. xanthii (1). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of three healthy, potted 2-month-old Brazilian verbena plants. Three non-inoculated plants served as controls. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained symptomless. The fungus present on the inoculated leaves was identical morphologically to that originally observed on diseased plants. Powdery mildew of Verbena spp. associated with Podosphaera sp. (including Sphaerotheca sp.) has been globally reported, but not on V. brasiliensis (1,2). To our knowledge, this is the first report of powdery mildew disease caused by P. xanthii on V. brasiliensis globally. Our field observations suggest that the powdery mildew could limit expansion of V. brasiliensis in Korea. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved February 18, 2014. (3) C. G. Song and Y. H. Yang. The Naturalized Plants in Jeju Island. Nam-Jeju County, Jeju, Korea, 2005. (4) P. F. Yao. Kew Bull. 45:101, 1990.