Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 148, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240881

RESUMEN

Transcription factor-based bioreporters have been extensively studied for monitoring and detecting environmental toxicants. In Escherichia coli, the multiple antibiotic resistance regulator (MarR) induces transcription upon binding to salicylic acid (SA). We generated SA-specific E. coli cell-based bioreporters utilizing the operator region of the mar operon and MarR as components of the reporter and sensing domains, respectively. Although bioreporters based on endogenous MarR and wild-type E. coli cells responded to SA, their sensitivity and selectivity were insufficient for practical sample monitoring. To improve these parameters, we genetically engineered host strains for optimal MarR expression, which enhanced the sensitivity of the biosensor to micromolar quantities of SA with increased selectivity. Under the optimized experimental conditions, the biosensor could quantify SA in environmental samples. For validation, the SA concentration in artificially contaminated SA-containing cosmetic samples was determined using the developed biosensor. Reliability assessment by comparing the concentrations determined using LC-MS/MS revealed > 90% accuracy of the bioreporters. Although bioreporters are not considered standard tools for environmental monitoring, bacterial cell-based bioreporters may serve as alternative tools owing to their affordability and simplicity. The SA biosensor developed in this study can potentially be a valuable tool for monitoring SA in environmental systems. KEY POINTS: • SA-responsive bioreporter is generated by employing mar operon system in E. coli • SA specificity and selectivity were enhanced by genetic/biochemical engineering • The novel bioreporter would be valuable for SA monitoring in environmental systems.


Asunto(s)
Escherichia coli , Ácido Salicílico , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografía Liquida , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
2.
J Agric Food Chem ; 71(13): 5302-5313, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36952620

RESUMEN

Flavonoid C-glucosides, which are found in several plant families, are characterized by several biological properties, including antioxidant, anticancer, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, antibacterial, antihyperalgesic, antiviral, and antinociceptive activities. The biosynthetic pathway of flavonoid C-glucosides in plants has been elucidated. In the present study, a pathway was introduced to Escherichia coli to synthesize four flavonoid C-glucosides, namely, isovitexin, vitexin, kaempferol 6-C-glucoside, and kaempferol 8-C-glucoside. A five- or six-step metabolic pathway for synthesizing flavonoid aglycones from tyrosine was constructed and two regioselective flavonoid C-glycosyltransferases from Wasabia japonica (WjGT1) and Trollius chinensis (TcCGT) were used. Additionally, the best shikimate gene module construct was selected to maximize the titer of each C-glucoside flavonoid. Isovitexin (30.2 mg/L), vitexin (93.9 mg/L), kaempferol 6-C-glucoside (14.4 mg/L), and kaempferol 8-C-glucoside (38.6 mg/L) were synthesized using these approaches. The flavonoid C-glucosides synthesized in this study provide a basis for investigating and unraveling their novel biological properties.


Asunto(s)
Flavonoides , Glucósidos , Flavonoides/metabolismo , Glucósidos/metabolismo , Quempferoles/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Front Microbiol ; 13: 881050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668759

RESUMEN

Bacterial cell-based biosensors have been widely developed for detecting environmental toxic materials. The znt-operon in Escherichia coli is a Zn(II)-responsive genetic system and is employed in Zn(II), Cd(II), and Hg(II)-sensing biosensors. In this study, point mutations were introduced in the regulatory protein ZntR to modulate its target selectivity, and metal ion-exporting genes, such as copA and zntA, in host cells were deleted to increase cellular metal ion levels and enhance specificity. Thus, the overall responses of the E. coli cell-based biosensors toward metal(loid) ions were increased, and their selectivity, which was originally for Cd(II) and Hg(II), was shifted to Pb(II). The gene encoding ZntA, known as the Zn(II)-translocating P-type ATPase, showed an impact on the ability of E. coli to export Pb(II), whereas copA deletion showed no significant impact. Noteworthily, the newly generated biosensors employing ZntR Cys115Ile showed the capacity to detect under 5 nM Pb(II) in solution, without response to other tested metal ions within 0-100 nM. To understand the marked effect of single point mutations on ZntR, computational modeling was employed. Although it did not provide clear answers, changes in the sequences of the metal-binding loops of ZntR modulated its transcriptional strength and target selectivity. In summary, the approaches proposed in this study can be valuable to generate new target-sensing biosensors with superior selectivity and specificity, which can in turn broaden the applicability of cell-based biosensors to monitor Pb(II) in environmental systems.

4.
J Appl Microbiol ; 132(2): 1166-1175, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34469625

RESUMEN

AIM: Chlorogenic acid and p-coumaroyl shikimate are hydroxycinnamic acid derivatives. These compounds are nutraceutical supplements due to their biological activities including prevention of cardiovascular disease and cancers. These two compounds were synthesized in Escherichia coli through two-culture system using two mutants, which are biochemically interdependent. The aim of this work was to improve the titres of their production in a single E. coli mutant in which all necessary genes were introduced. This was done by testing various shikimate gene combinations to determine the optimal gene combination for the synthesis of chlorogenic acid and p-coumaroyl shikimate. METHODS AND RESULTS: A series of gene modules harbouring shikimate pathway genes were constructs. Six gene module constructs for chlorogenic acid synthesis and eight constructs for p-coumaric acid synthesis were tested in order to find the best one. Chlorogenic acid synthesis showed highest with the gene module construct containing ydiB, aroB, aroGf , ppsA and tktA. Using the E. coli strain, 109.7 mg L-1 chlorogenic acid was synthesized. The best gene module construct for the p-coumaroyl shikimate synthesis contained aroD and aroGf . In addition, we used two E. coli deletion mutant strains (ΔaroK and ΔaroL) to increase the final titre. The E. coli ΔaroK mutant harbouring this gene module construct synthesized 713.4 mg L-1 of p-coumaroyl shikimate. CONCLUSION: The chlorogenic acid synthesis using the current system was approximately 35.4% higher of the titre than titres obtained with an alternative method that depends on co-cultivation of two mutants. At the same time, production of p-coumaroyl shikimate increased 5.8 times. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study's findings indicate that our selection of the shikimate gene module contributed to increases in the levels of the substrates and could be applied to synthesize other compounds whose synthesis requires intermediates of the shikimate pathway.


Asunto(s)
Ácido Clorogénico , Escherichia coli , Escherichia coli/genética , Redes Reguladoras de Genes , Ingeniería Metabólica
5.
J Microbiol Biotechnol ; 30(5): 681-688, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32482933

RESUMEN

Bacterial cell-based biosensors, or whole-cell bioreporters (WCBs), are an alternative tool for the quantification of hazardous materials. Most WCBs share similar working mechanisms. In brief, the recognition of a target by sensing domains induces a biological event, such as changes in protein conformation or gene expression, providing a basis for quantification. WCBs targeting heavy metal(loid)s employ metalloregulators as sensing domains and control the expression of genes in the presence of target metal(loid) ions, but the diversity of targets, specificity, and sensitivity of these WCBs are limited. In this study, we genetically engineered the metal-binding loop (MBL) of ZntR, which controls the znt-operon in Escherichia coli. In the MBL of ZntR, three Cys sites interact with metal ions. Based on the crystal structure of ZntR, MBL sequences were modified by sitedirected mutagenesis. As a result, the metal-sensing properties of WCBs differed depending on amino acid sequences and the new selectivity to Cr or Pb was observed. Although there is room for improvement, our results support the use of currently available WCBs as a platform to generate new WCBs to target other environmental pollutants including metal(loid)s.


Asunto(s)
Proteínas Bacterianas , Técnicas Biosensibles/métodos , Metales Pesados , Ingeniería de Proteínas/métodos , Factores de Transcripción , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hongos/efectos de los fármacos , Metales Pesados/química , Metales Pesados/metabolismo , Enfermedades de las Plantas/microbiología , Unión Proteica/genética , Conformación Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Microb Cell Fact ; 19(1): 73, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197639

RESUMEN

BACKGROUND: Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA. RESULTS: We synthesized two acridones in Escherichia coli. Acridone synthase (ACS) and anthraniloyl-CoA ligase genes were transformed into E. coli, and the synthesis of acridone was examined. To increase the levels of endogenous anthranilate, we tested several constructs expressing proteins involved in the shikimate pathway and selected the best construct. To boost the supply of malonyl-CoA, genes coding for acetyl-coenzyme A carboxylase (ACC) from Photorhabdus luminescens were overexpressed in E. coli. For the synthesis of 1,3-dihydroxy-10-methylacridone, we utilized an N-methyltransferase gene (NMT) to supply N-methylanthranilate and a new N-methylanthraniloyl-CoA ligase. After selecting the best combination of genes, approximately 17.3 mg/L of 1,3-dihydroxy-9(10H)-acridone (DHA) and 26.0 mg/L of 1,3-dihydroxy-10-methylacridone (NMA) were synthesized. CONCLUSIONS: Two bioactive acridone derivatives were synthesized by expressing type III plant polyketide synthases and other genes in E. coli, which increased the supplement of substrates. This study showed that is possible to synthesize diverse polyketides in E. coli using plant polyketide synthases.


Asunto(s)
Acridonas/metabolismo , Escherichia coli , Aciltransferasas/genética , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Microorganismos Modificados Genéticamente/metabolismo , Photorhabdus/enzimología , Proteínas de Plantas/genética , Sintasas Poliquetidas/genética , Proteínas Recombinantes/genética
7.
Appl Microbiol Biotechnol ; 104(6): 2691-2699, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32002600

RESUMEN

Despite the known hazardous effects of antimony (Sb) on human health, Sb monitoring biosensors have not been as actively investigated as arsenic (As) biosensors. Whole-cell bioreporters (WCBs) employing an arsenic-responsive operon and a regulatory protein (ArsR) are reportedly capable of monitoring arsenite, arsenate, and antimonite. However, the potential of WCBs as Sb biosensors has been largely ignored. Here, the metal-binding site of ArsR (sequenced as ELCVCDLCTA from amino acid number 30 to 39) was modified via genetic engineering to enhance Sb specificity. By relocating cysteine residues and introducing point mutations, nine ArsR mutants were generated and tested for metal(loid) ion specificity. The Sb specificity of WCBs was enhanced by the C37S/A39C and L36C/C37S mutations on the As binding site of ArsR. Additionally, WCBs with other ArsR mutants exhibited new target sensing capabilities toward Cd and Pb. Although further research is required to enhance the specificity and sensitivity of WCBs and to broaden their practical applications, our proposed strategy based on genetic engineering of regulatory proteins provides a valuable basis to generate WCBs to monitor novel targets.


Asunto(s)
Antimonio/análisis , Técnicas Biosensibles/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Transactivadores/genética , Arseniatos/análisis , Arsenitos/análisis , Sitios de Unión , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Mutación Puntual
8.
J Microbiol Biotechnol ; 29(10): 1636-1643, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31474085

RESUMEN

Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and N-2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using Escherichia coli. While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (ubiC), tyrosine decarboxylase (TyDC), isochorismate synthase (entC), isochorismate pyruvate lyase (pchB), and tryptophan decarboxylase (TDC) for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in E. coli. Genes for CoA ligase (hbad) and amide formation (CaSHT and OsHCT) were also introduced to form hydroxybenzoic acid and amine conjugates. In addition, we engineered E. coli to provide increased substrates. These approaches led to the yield of 259.3 mg/l 4-HBT and 227.2 mg/l 2-HBT and could be applied to synthesize diverse bioactive hydroxybenzoyl amine conjugates.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibenzoatos/metabolismo , Triptaminas/metabolismo , Vías Biosintéticas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxibenzoatos/química , Ingeniería Metabólica , Triptaminas/química
9.
J Microbiol Biotechnol ; 29(6): 839-844, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31154751

RESUMEN

Anthranilate derivatives have been used as flavoring and fragrant agents for a long time. Recently, these compounds are gaining attention due to new biological functions including antinociceptive and analgesic activities. Three anthranilate derivatives, N-methylanthranilate, methyl anthranilate, and methyl N-methylanthranilate were synthesized using metabolically engineered stains of Escherichia coli. NMT encoding N-methyltransferase from Ruta graveolens, AMAT encoding anthraniloyl-coenzyme A (CoA):methanol acyltransferase from Vitis labrusca, and pqsA encoding anthranilate coenzyme A ligase from Pseudomonas aeruginosa were cloned and E. coli strains harboring these genes were used to synthesize the three desired compounds. E. coli mutants (metJ, trpD, tyrR mutants), which provide more anthranilate and/or S-adenosyl methionine, were used to increase the production of the synthesized compounds. MS/MS analysis was used to determine the structure of the products. Approximately, 185.3 µM N-methylanthranilate and 95.2 µM methyl N-methylanthranilate were synthesized. This is the first report about the synthesis of anthranilate derivatives in E. coli.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , ortoaminobenzoatos/metabolismo , Vías Biosintéticas , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería Metabólica , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/metabolismo , Ruta/enzimología , Ruta/genética , Vitis/enzimología , Vitis/genética , ortoaminobenzoatos/química
10.
J Microbiol Biotechnol ; 30(5): 770-776, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32482944

RESUMEN

Genistein is a type of isoflavonoid found predominantly in leguminous plants. Genistein has diverse biological activities, such as anthelmintic and antioxidant effects, as well as inhibitory effects on the growth of several cancers. In addition, genistein is well known as a phytoestrogen. In this study, we attempted to biologically synthesize genistein from either p-coumaric acid or naringenin using Escherichia coli as a biotransformation host. Four genes, Os4CL, PeCHS, RcIFS, and OsCPR, were used for genistein production. To functionally express RcIFS and OsCPR, two members of the cytochrome P450 family, in E. coli, the membrane-binding anchor domain of each gene was removed, and RcIFS and OsCPR were translationally fused to generate an RcIFS-OsCPR hybrid. Os4CL and PeCHS, or the RcIFS-OsCPR hybrid, were then transformed into E. coli BL21(DE3). Using these strains, we optimized our culture system at a laboratory scale in terms of the cell density, concentrations of substrate and isopropyl-ß-D-thiogalactoside, temperature, and culture medium. Under the optimized culture conditions, genistein was produced at up to 35 mg/l and 18.6 mg/l using naringenin and p-coumaric acid, respectively.


Asunto(s)
Escherichia coli/metabolismo , Flavanonas/metabolismo , Genisteína/metabolismo , Ingeniería Metabólica , Propionatos/metabolismo , Antihelmínticos/metabolismo , Anticarcinógenos/metabolismo , Antioxidantes/metabolismo , Biotransformación , Clonación Molecular , Ácidos Cumáricos , Expresión Génica , Redes y Vías Metabólicas/genética , Fitoestrógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
11.
Appl Microbiol Biotechnol ; 102(11): 4863-4872, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29627854

RESUMEN

Despite the large number of bioreporters developed to date, the ability to detect heavy metal(loid)s with bioreporters has thus far been limited owing to the lack of appropriate genetic systems. We here present a novel approach to modulate the selectivity and sensitivity of microbial whole-cell bioreporters (WCBs) for sensing metal(loid)s via the znt-operon from Escherichia coli, which were applied to quantify the bioavailability of these contaminants in environmental samples. The WCB harboring the fusion gene zntAp::egfp was used as a microbial metal(loid) sensor, which was turned on by the interaction between ZntR and metal(loid) ions. This design makes it possible to modulate the selectivity and sensitivity to metal(loid)s simply by changing the metal-binding property of ZntR and by disrupting the metal efflux system of E. coli, respectively. In fact, the E. coli cell-based bioreporter harboring zntAp::egfp showed multi-target responses to Cd(II), Hg(II), and Zn(II). However, the WCBs showed responses toward only Cd(II) and Hg(II) when the amino acid sequence of the metal-binding loop of ZntR was changed to CNHEPGTVCPIC and CPGDDSADC, respectively. Moreover, the sensitivity toward both Cd(II) and Hg(II) was enhanced when copA, which is known to export copper and silver, was deleted. Thus, our findings provide a strong foundation for expanding the target of WCBs from the currently limited number of genetic systems available.


Asunto(s)
Técnicas Biosensibles/métodos , Cadmio/análisis , Monitoreo del Ambiente/métodos , Mercurio/análisis , Disponibilidad Biológica , Escherichia coli/genética , Escherichia coli/metabolismo
12.
Microb Cell Fact ; 17(1): 46, 2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29566686

RESUMEN

BACKGROUND: Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. RESULTS: We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. CONCLUSIONS: Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns.


Asunto(s)
Escherichia coli/química , Ingeniería Metabólica/métodos , ortoaminobenzoatos/síntesis química , ortoaminobenzoatos/química
13.
J Microbiol Biotechnol ; 28(2): 323-329, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29212299

RESUMEN

In Escherichia coli, the transcription of genes related to metal homeostasis is activated by the presence of target metals. The promoter regions of those genes can be fused with reporter genes to generate whole-cell bioreporters (WCBs); these organisms sense the presence of target metals through reporter gene expression. However, the limited number of available promoters for sensing domains restricts the number of WCB targets. In this study, we have demonstrated an alternative method to generate novel WCBs, based on the notion that since the sensing mechanisms of WCBs are related to metal transportation systems, their properties can be modulated by disrupting metal homeostasis. Mutant E. coli strains were generated by deleting the znt-operon genes zntA, which encodes a zinc-export protein, and zntR, which encodes a znt-operon regulatory protein, to investigate the effects on the metal-sensing properties of WCBs. Deletion of zntA increased the sensitivity but abolished the selectivity of cadmium-sensing WCBs, whereas arsenic-sensing WCBs gained sensitivity toward cadmium. When zntR was deleted, cadmium-sensing WCBs lost the ability to detect cadmium, and this was recovered by introducing exogenous zntR. In addition, the metal-binding site of ZntR was genetically engineered to modulate metal selectivity. This study provides a valuable platform for the development of novel E. coli-based WCBs.


Asunto(s)
Técnicas Biosensibles/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Genes Reporteros/genética , Homeostasis , Metales/metabolismo , Adenosina Trifosfatasas/genética , Cadmio/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Modelos Moleculares , Operón , Regiones Promotoras Genéticas/genética , Conformación Proteica , Ingeniería de Proteínas , Factores de Transcripción/genética , Zinc/metabolismo
14.
Appl Microbiol Biotechnol ; 102(3): 1513-1521, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29243083

RESUMEN

Metals are essential to all organisms; accordingly, cells employ numerous genes to maintain metal homeostasis as high levels can be toxic. In the present study, the gene operons responsive to metal(loid)s were employed to generate bacterial cell-based biosensors to detect target metal(loid)s. The cluster of genes related to copper transport known as the cop-operon is regulated by the interaction between the copA promoter region (copAp) and CueR, turning on and off gene expression upon copper ion binding. Therefore, the detection of copper ions could be achieved by inserting a plasmid harboring the fusion of copAp and reporter genes, such as enzymes and fluorescent genes. However, copAp is not as strong a promoter as other metal-inducible promoters, such as znt-, mer-, and ars-operons; thereby, its sensitivity toward copper ions was not sufficient for quantification. To overcome this problem, we engineered Escherichia coli with a deletion of copA to interfere with copper export from cells. The engineered E. coli whole-cell bioreporter was able to detect copper ions at 0 to 10 µM in an aqueous solution. Most importantly, it was specific to copper among several tested heavy metal(loid)s. Therefore, it will likely be useful to detect copper in diverse environmental systems. Although additional improvements are still required to optimize the E. coli-based copper-sensing whole-cell bioreporters presented in this study, our results suggest that there is huge potential to generate whole-cell bioreporters for additional targets by molecular engineering.


Asunto(s)
Proteínas Bacterianas/genética , Cobre/metabolismo , Escherichia coli/genética , Ingeniería Genética , Operón , Técnicas Biosensibles/métodos , Regulación Bacteriana de la Expresión Génica , Metales Pesados/metabolismo , Plásmidos , Regiones Promotoras Genéticas
15.
J Ind Microbiol Biotechnol ; 44(11): 1551-1560, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28819877

RESUMEN

Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 µM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 µM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.


Asunto(s)
Escherichia coli/genética , Microorganismos Modificados Genéticamente , Serotonina/biosíntesis , Triptaminas/biosíntesis , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Bacillus/enzimología , Bacillus/genética , Vías Biosintéticas , Catharanthus/enzimología , Catharanthus/genética , Cinamatos/metabolismo , Clonación Molecular , Ácidos Cumáricos/metabolismo , Escherichia coli/metabolismo , Fenilalanina , Fenilanina Amoníaco-Liasa/metabolismo
16.
Bioorg Med Chem Lett ; 27(3): 420-426, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049590

RESUMEN

Many membrane-associated proteins are involved in various signaling pathways, including the phosphoinositide 3-kinase (PI3K) pathway, which has key roles in diverse cellular processes. Disruption of the activities of these proteins is involved in the development of disease in humans, making these proteins promising targets for drug development. In most cases, the catalytic domain is targeted; however, it is also possible to target membrane associations in order to regulate protein activity. In this study, we established a novel method to study protein-lipid interactions and screened for flavonoid-derived antagonists of PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 (PDK1) pleckstrin homology (PH) domain. Using an enhanced green fluorescent protein (eGFP)-tagged PDK1 PH domain and 50% sucrose-loaded liposomes, the protein-lipid interaction could be efficiently evaluated using liposome pull-down assays coupled with fluorescence spectrophotometry, and a total of 32 flavonoids were screened as antagonists for PtdIns(3,4,5)P3 binding with the PDK1 PH domain. From this analysis, we found that two adjunct hydroxyl groups in the C ring were responsible for the inhibitory effects of the flavonoids. Because the flavonoids shared structural similarities, the results were then subjected to quantitative structure-activity relationship (QSAR) analysis. The results were then further confirmed by in silico docking experiments. Taken together, our strategy presented herein to screen antagonists targeting lipid-protein interactions could be an alternative method for identification and characterization of drug candidates.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Flavonoides/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Sitios de Unión , Flavonas/química , Flavonas/metabolismo , Flavonoides/química , Flavonoles , Liposomas/química , Liposomas/metabolismo , Simulación del Acoplamiento Molecular , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Dominios Homólogos a Pleckstrina , Unión Proteica , Relación Estructura-Actividad Cuantitativa
17.
Microb Cell Fact ; 15(1): 182, 2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27776529

RESUMEN

BACKGROUND: Nucleotide sugars serve as sugar donors for the synthesis of various glycones. The biological and chemical properties of glycones can be altered depending which sugar is attached. Bacteria synthesize unusual nucleotide sugars. A novel nucleotide sugar can be synthesized in Escherichia coli by introducing nucleotide biosynthetic genes from other microorganisms into E. coli. The engineered E. coli strains can be used as a platform for the synthesis of novel glycones. RESULTS: Four genes, Pdeg (UDP-N-acetylglucosamine C4,6-dehydratase), Preq (UDP-4-reductase), UDP-GlcNAc 6-DH (UDP-N-acetylglucosamine 6-dehydrogenase), and UXNAcS (UDP-N-acetylxylosamine synthase), were employed to synthesize UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid, and UDP-N-acetylxylosamine in E. coli. We engineered an E. coli nucleotide sugar biosynthetic pathway to increase the pool of substrate for the target nucleotide sugars. Uridine diphosphate dependent glycosyltransferase (UGT) was also selected and introduced into E. coli. Using engineered E. coli, high levels of three novel flavonoid glycosides were obtained; 158.3 mg/L quercetin 3-O-(N-acetyl)quinovosamine, 172.5 mg/L luteolin 7-O-(N-acetyl)glucosaminuronic acid, and 160.8 mg/L quercetin 3-O-(N-acetyl)xylosamine. CONCLUSIONS: We reconstructed an E. coli nucleotide pathway for the synthesis of UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid and UDP-N-acetylxylosamine in an E. coli galU (UDP-glucose 1-phosphate uridylyltransferase) or pgm (phosphoglucomutase) deletion mutant. Using engineered E. coli strains harboring a specific UGT, three novel flavonoids glycones were synthesized. The E. coli strains used in this study can be used for the synthesis of diverse glycones.


Asunto(s)
Amino Azúcares/biosíntesis , Escherichia coli/metabolismo , Flavonoides/biosíntesis , Escherichia coli/enzimología , Escherichia coli/genética , Ingeniería Metabólica/métodos
18.
J Ind Microbiol Biotechnol ; 43(6): 841-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26931782

RESUMEN

Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Glicósidos/biosíntesis , Quercetina/biosíntesis , Proteínas Bacterianas/genética , Escherichia coli/genética , Flavonoides/biosíntesis , Glicosilación , Glicosiltransferasas/metabolismo , Plásmidos
19.
Microb Cell Fact ; 14: 162, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26463041

RESUMEN

BACKGROUND: Hydroxycinnamic acids (HCAs) including cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid, are C6-C3 phenolic compounds that are synthesized via the phenylpropanoid pathway. HCAs serve as precursors for the synthesis of lignins, flavonoids, anthocyanins, stilbenes and other phenolic compounds. HCAs can also be conjugated with diverse compounds including quinic acid, hydroxyl acids, and amines. Hydroxycinnamoyl (HC) amine conjugates such as N-HC tyramines and N-HC phenethylamines have been considered as potential starting materials to develop antiviral and anticancer drugs. RESULTS: We synthesized N-HC tyramines and N-HC phenethylamines using three different approaches in Escherichia coli. Five N-HC phenethylamines and eight N-HC tyramines were synthesized by feeding HCAs and phenethylamine or tyramine to E. coli harboring 4CL (encoding 4-coumarate CoA:ligase) and either SHT (encoding phenethylamine N-HC transferase) or THT (encoding tyramine N-HC transferase). Also, N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid using E. coli harboring an additional gene, PDC (encoding phenylalanine decarboxylase) or TDC (encoding tyrosine decarboxylase). Finally, we synthesized N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine from glucose by reconstructing the metabolic pathways for their synthesis in E. coli. Productivity was maximized by optimizing the cell concentration and incubation temperature. CONCLUSIONS: We reconstructed the metabolic pathways for synthesis of N-HC tyramines and N-HC phenethylamines by expressing several genes including 4CL, TST or SHT, PDC or TDC, and TAL (encoding tyrosine ammonia lyase) and engineering the shikimate metabolic pathway to increase endogenous tyrosine concentration in E. coli. Approximately 101.9 mg/L N-(p-coumaroyl) phenethylamine and 495.4 mg/L N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid. Furthermore, 152.5 mg/L N-(p-coumaroyl) phenethylamine and 94.7 mg/L N-(p-coumaroyl) tyramine were synthesized from glucose.


Asunto(s)
Ácidos Cumáricos/metabolismo , Fenetilaminas/metabolismo , Tiramina/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas , Ingeniería Metabólica , Fenetilaminas/química , Plásmidos/genética , Plásmidos/metabolismo , Transferasas/genética , Transferasas/metabolismo , Tiramina/química
20.
J Microbiol Biotechnol ; 25(9): 1442-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25975614

RESUMEN

The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological activities and can be sourced from some vegetables and fruits. Microorganisms are an alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in Escherichia coli. After optimization of different combinations of constructs, the yield of apigenin was increased from 13 mg/l to 30 mg/l. By introducing two additional genes (TAL and POMT7) into an apigenin-producing E. coli strain, we were able to synthesize 7-O-methyl apigenin (genkwanin) from tyrosine. In addition, the tyrosine content in E. coli was modulated by overexpressing aroG and tyrA. The engineered E. coli strain synthesized approximately 41 mg/l genkwanin.


Asunto(s)
Apigenina/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Flavonas/biosíntesis , Ingeniería Metabólica/métodos , Biotransformación , Ácidos Cumáricos/metabolismo , Redes y Vías Metabólicas/genética , Propionatos , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...