Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotoxicology ; 18(2): 214-228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557361

RESUMEN

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter. Among existing analytical methods, few have been fully and properly validated. To remedy this, we undertook an inter-laboratory comparison on samples of freeze-dried pig lung, ground and doped with CNTs. Eight laboratories were enrolled to analyze 3 types of CNTs at 2 concentration levels each in this organic matrix. Associated with the different analysis techniques used (specific to each laboratory), sample preparation may or may not have involved prior digestion of the matrix, depending on the analysis technique and the material being analyzed. Overall, even challenging, laboratories' ability to quantify CNT levels in organic matter is demonstrated. However, CNT quantification is often overestimated. Trueness analysis identified effective methods, but systematic errors persisted for some. Choosing the assigned value proved complex. Indirect analysis methods, despite added steps, outperform direct methods. The study emphasizes the need for reference materials, enhanced precision, and organized comparisons.


Asunto(s)
Pulmón , Nanotubos de Carbono , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Animales , Porcinos , Pulmón/química , Pulmón/efectos de los fármacos , Laboratorios/normas , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química
2.
Saf Health Work ; 15(1): 114-117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38496275

RESUMEN

A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire. We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (µm). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

3.
Biomolecules ; 12(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36291560

RESUMEN

The inhalation toxicity of carbon nanofibers (CNFs) is not clearly known due to relatively few related studies reported. An acute inhalation study and short-term inhalation study (5 days) were therefore conducted using Sprague-Dawley rats. In the acute inhalation study, the rats were grouped and exposed to a fresh air control or to low (0.238 ± 0.197), moderate (1.935 ± 0.159), or high (24.696 ± 6.336 mg/m3) CNF concentrations for 6 h and thereafter sacrificed at 14 days. For the short-term inhalation study, the rats were grouped and exposed to a fresh air control or low (0.593 ± 0.019), moderate (2.487 ± 0.213), or high (10.345 ± 0.541 mg/m3) CNF concentrations for 6 h/day for 5 days and sacrificed at 1, 3, and 21 days post-exposure. No mortality was observed in the acute inhalation study. Thus, the CNF LC50 was higher than 25 mg/m3. No significant body or organ weight changes were noted during the 5 days short-term inhalation study or during the post-exposure period. No significant effects of toxicological importance were observed in the hematological, blood biochemical, and coagulation tests. In addition, the bronchoalveolar lavage (BAL) fluid cell differential counts and BAL inflammatory markers showed no CNF-exposure-relevant changes. The histopathological examination also found no CNF-exposure-relevant histopathological lesions. Thus, neither acute nor 5 days inhalation exposure to CNFs induced any noticeable toxicological responses.


Asunto(s)
Nanofibras , Ratas , Animales , Ratas Sprague-Dawley , Carbono/toxicidad , Pulmón/patología , Administración por Inhalación
4.
Biomolecules ; 11(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809058

RESUMEN

According to recent research, indium nanoparticles (NPs) are more toxic than micro-sized particles. While cases of indium lung disease have been reported worldwide, very little research has been conducted on the occupational exposure to indium NPs. Recently, an indium-related lung disease was reported in Korea, a global powerhouse for display manufacturing. In this study, we conducted an assessment ofoccupational exposure at an indium tin oxide (ITO) powder manufacturing plant, where the first case of indium lung disease in Korea occurred. Airborne dustwas obtained from a worker's breathing zone, and area sampling in the workplace environment was conducted using real-time monitoring devices. Personal samples were analyzed for the indium concentrations in total dust, respirable dust fraction, and NPs using personal NPs respiratory deposition samplers. The total indium concentration of the personal samples was lower than the threshold limit value recommended by the American Conference of Governmental Industrial Hygienists (ACGIH TLV), which was set as occupational exposure limit (OEL). However, the respirable indium concentration exceeded the recently set ACGIH TLV for the respirable fraction of indium dust. The concentration of indium NPs ranged between 0.003 and 0.010 × 10-2 mg/m3, accounting for only 0.4% of the total and 2.7% of the respirable indium particles. This was attributed to the aggregating of NPs at the µm sub-level. Given the extremely low fraction of indium NPs in the total and respirable dust, the current OEL values, set as the total and respirable indium concentrations, do not holistically represent the occupational exposure to indium NPs or prevent health hazards. Therefore, it is necessary to set separate OEL values for indium NPs. This study covers only the process of handling ITO powder. Therefore, follow-up studies need to be conducted on other ITO sputtering target polishing and milling processes, which typically generate more airborne NPs, to further investigate the effects of indium on workers and facilitate the necessary implementation of indium-reducing technologies.


Asunto(s)
Polvo/análisis , Indio/química , Exposición Profesional/análisis , Compuestos de Estaño/química , Humanos , Nanopartículas/análisis , Nanopartículas/ultraestructura , Tamaño de la Partícula
5.
Nanotoxicology ; 14(2): 250-262, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31855090

RESUMEN

Lung deposition and retention measurements are now required by the newly revised OECD inhalation toxicity testing guidelines 412 and 413 when evaluating the clearance and biopersistence of poorly soluble nanomaterials, such as multi-walled carbon nanotubes (MWCNTs). However, evaluating the lung deposition concentration is challenging with certain nanomaterials, such as carbon-based and iron-based nanomaterials, as it is difficult to differentiate them from endogenous elements. Therefore, the current 28-day inhalation toxicity study investigated the lung retention kinetics of tangled MWCNTs. Male Sprague Dawley rats were exposed to MWCNTs at 0, 0.257, 1.439, and 4.253 mg/m3 for 28 days (6 h/day, 5 days/week, 4 weeks). Thereafter, the rats were sacrificed at day 1, 7, and 28 post-exposure and the pulmonary inflammatory response evaluated by analyzing the bronchoalveolar lavage fluid. Plus, the blood biochemistry, hematology, and histopathology of the lungs were also examined. The lung deposition and retention of MWCNTs were determined based on the elemental carbon content in the lungs after tissue digestion. The number of polymorphonuclear cells and LDH concentration were both found to be significantly higher with the medium and high concentrations (1.439 and 4.253 mg/m3) and dose dependent. The estimated retention half-life for the high concentration (4.253 mg/m3) was about 35 days. The results of this study indicate that tangled MWCNTs seem to have a relatively shorter retention half-life when compared to previous reports on rigid MWCNTs, and the no-observed adverse effect level (NOAEL) for the tested tangled MWCNTs was 0.257 mg/m3 in a previous rat 28-day subacute inhalation toxicity study.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Aerosoles , Animales , Líquido del Lavado Bronquioalveolar/química , Relación Dosis-Respuesta a Droga , Semivida , Exposición por Inhalación/análisis , Pulmón/metabolismo , Pulmón/patología , Masculino , Neutrófilos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad Subaguda
6.
Nanotoxicology ; 12(3): 224-238, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385887

RESUMEN

Graphene oxides possess unique physicochemical properties with important potential applications in electronics, pharmaceuticals, and medicine. However, the toxicity following inhalation exposure to graphene oxide has not yet been clarified. Therefore, this study conducted a short-term graphene oxide inhalation toxicity analysis using a nose-only inhalation exposure system and male Sprague-Dawley rats. A total of four groups (15 rats per group) were exposed: (1) control (fresh air), (2) low concentration (0.76 ± 0.16 mg/m3), (3) moderate concentration (2.60 ± 0.19 mg/m3), and (4) high concentration (9.78 ± 0.29 mg/m3). The rats were exposed to graphene oxide for 6 h/day for 5 days, followed by recovery for 1, 3, and 21 days. No significant body or organ weight changes were noted after the short-term exposure or during the recovery period. Similarly, no significant systemic effects of toxicological importance were noted in the hematological assays, bronchoalveolar lavage fluid (BAL) inflammatory markers, BAL fluid cytokines, or blood biochemical assays following the graphene oxide exposure or during the post-exposure observation period. Moreover, no significant differences were observed in the BAL cell differentials, such as lymphocytes, macrophages, or polymorphonuclear cells. Graphene oxide-ingested alveolar macrophages as a spontaneous clearance reaction were observed in the lungs of all the concentration groups from post 1 day to post 21 days. Histopathological examination of the liver and kidneys did not reveal any significant test-article-relevant histopathological lesions. Importantly, similar to previously reported graphene inhalation data, this short-term nose-only inhalation study found only minimal or unnoticeable graphene oxide toxicity in the lungs and other organs.


Asunto(s)
Grafito/administración & dosificación , Grafito/toxicidad , Nanoestructuras/administración & dosificación , Nanoestructuras/toxicidad , Óxidos/administración & dosificación , Óxidos/toxicidad , Administración por Inhalación , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar/citología , Citocinas/metabolismo , Exposición por Inhalación , Riñón/efectos de los fármacos , Recuento de Leucocitos , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
Nanotoxicology ; 10(7): 891-901, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26691980

RESUMEN

Graphene, a two-dimensional engineered nanomaterial, is now being used in many applications, such as electronics, biological engineering, filtration, lightweight and strong nanocomposite materials, and energy storage. However, there is a lack of information on the potential health effects of graphene in humans based on inhalation, the primary engineered nanomaterial exposure pathway in workplaces. Thus, an inhalation toxicology study of graphene was conducted using a nose-only inhalation system for 28 days (6 h/day and 5 days/week) with male Sprague-Dawley rats that were then allowed to recover for 1-, 28-, and 90-day post-exposure period. Animals were separated into 4 groups (control, low, moderate, and high) with 15 male rats (5 rats per time point) in each group. The measured mass concentrations for the low, moderate, and high exposure groups were 0.12, 0.47, and 1.88 mg/m(3), respectively, very close to target concentrations of 0.125, 0.5, and 2 mg/m(3). Airborne graphene exposure was monitored using several real-time instrumentation over 10 nm to 20 µm for size distribution and number concentration. The total and respirable elemental carbon concentrations were also measured using filter sampling. Graphene in the air and biological media was traced using transmission electron microscopy. In addition to mortality and clinical observations, the body weights and food consumption were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for blood biochemical tests, and the organ weights were measured. No dose-dependent effects were recorded for the body weights, organ weights, bronchoalveolar lavage fluid inflammatory markers, and blood biochemical parameters at 1-day post-exposure and 28-day post-exposure. The inhaled graphenes were mostly ingested by macrophages. No distinct lung pathology was observed at the 1-, 28- and 90-day post-exposure. The inhaled graphene was translocated to lung lymph nodes. The results of this 28-day graphene inhalation study suggest low toxicity and a NOAEL of no less than 1.88 mg/m(3).


Asunto(s)
Grafito/toxicidad , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanoestructuras/toxicidad , Animales , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar , Relación Dosis-Respuesta a Droga , Grafito/química , Humanos , Pulmón/metabolismo , Masculino , Nanoestructuras/química , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
8.
Nanotoxicology ; 9(8): 1023-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25697182

RESUMEN

Graphene has recently been attracting increasing attention due to its unique electronic and chemical properties and many potential applications in such fields as semiconductors, energy storage, flexible electronics, biosensors and medical imaging. However, the toxicity of graphene in the case of human exposure has not yet been clarified. Thus, a 5-day repeated inhalation toxicity study of graphene was conducted using a nose-only inhalation system for male Sprague-Dawley rats. A total of three groups (20 rats per group) were compared: (1) control (ambient air), (2) low concentration (0.68 ± 0.14 mg/m(3) graphene) and (3) high concentration (3.86 ± 0.94 mg/m(3) graphene). The rats were exposed to graphene for 6 h/day for 5 days, followed by recovery for 1, 3, 7 or 28 days. The bioaccumulation and macrophage ingestion of the graphene were evaluated in the rat lungs. The exposure to graphene did not change the body weights or organ weights of the rats after the 5-day exposure and during the recovery period. No statistically significant difference was observed in the levels of lactate dehydrogenase, protein and albumin between the exposed and control groups. However, graphene ingestion by alveolar macrophages was observed in the exposed groups. Therefore, these results suggest that the 5-day repeated exposure to graphene only had a minimal toxic effect at the concentrations and time points used in this study.


Asunto(s)
Grafito/administración & dosificación , Grafito/toxicidad , Macrófagos Alveolares/metabolismo , Administración por Inhalación , Albúminas/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Grafito/farmacocinética , L-Lactato Deshidrogenasa/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Proteínas/metabolismo , Ratas , Factores de Tiempo
9.
Saf Health Work ; 3(4): 294-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23251845

RESUMEN

Previous studies on the vast increase in suicide mortality in Southeast Asia have indicated that suicide rates increase in parallel with a rise in unemployment or during periods of economic recession. This paper examines the effects of economic recession on suicidal rates amongst agriculture, fisheries, and forestry workers in Korea. Monthly time-series gross domestic product (GDP) data were linked with suicidal rates gathered from the cause of death records between1993-2008. Data were analyzed using generalized additive models to analyze trends, while a polynomial lag model was used to assess the unconstrained time lag effects of changes in GDP on suicidal rate. We found that there were significant inverse correlations between changes in GDP and suicide for a time lag of one to four months after the occurrence of economic event. Furthermore, it was evident that the overall relative risks of suicide were high enough to bring about social concern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...