Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37512929

RESUMEN

The members of Microbacterium isolated from different environments are known to form peptidoglycan. In this study, we compared the biofilm-forming abilities of Microbacterium sp. PAMC22086 (PAMC22086), which was isolated from the soil in the South Shetland Islands and Microbacterium sp. PAMC21962 (PAMC21962), which was isolated from algae in the South Shetland Islands. The analysis of average nucleotide identity and phylogeny of PAMC22086 revealed a 97% similarity to Microbacterium oxydans VIU2A, while PAMC21962 showed a 99.1% similarity to Microbacterium hominis SGAir0570. For the comparative genomic analysis of PAMC22086 and PAMC21962, the genes related to biofilm formation were identified using EggNOG and KEGG pathway databases. The genes possessed by both PAMC22086 and PAMC21962 are cpdA, phnB, rhlC, and glgC, which regulate virulence, biofilm formation, and multicellular structure. Among the genes indirectly involved in biofilm formation, unlike PAMC21962, PAMC22086 possessed csrA, glgC, and glgB, which are responsible for attachment and glycogen biosynthesis. Additionally, in PAMC22086, additional functional genes rsmA, which is involved in mobility and polysaccharide production, and dksA, GTPase, and oxyR, which play roles in cell cycle and stress response, were identified. In addition, the biofilm-forming ability of the two isolates was examined in vivo using the standard crystal violet staining technique, and morphological differences in the biofilm were investigated. It is evident from the different distribution of biofilm-associated genes between the two strains that the bacteria can survive in different niches by employing distinct strategies. Both strains exhibit distinct morphologies. PAMC22086 forms a biofilm that attaches to the side, while PAMC21962 indicates growth starting from the center. The biofilm formation-related genes in Microbacterium are not well understood. However, it has been observed that Microbacterium species form biofilm regardless of the number of genes they possess. Through comparison between different Microbacterium species, it was revealed that specific core genes are involved in cell adhesion, which plays a crucial role in biofilm formation. This study provides a comprehensive profile of the Microbacterium genus's genomic features and a preliminary understanding of biofilm in this genus, laying the foundation for further research.

2.
Front Microbiol ; 14: 1302236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293557

RESUMEN

Burkholderia is a versatile strain that has expanded into several genera. It has been steadily reported that the genome features of Burkholderia exhibit activities ranging from plant growth promotion to pathogenicity across various isolation areas. The objective of this study was to investigate the secondary metabolite patterns of 366 Burkholderia species through comparative genomics. Samples were selected based on assembly quality assessment and similarity below 80% in average nucleotide identity. Duplicate samples were excluded. Samples were divided into two groups using FastANI analysis. Group A included B. pseudomallei complex. Group B included B. cepacia complex. The limitations of MLST were proposed. The detection of genes was performed, including environmental and virulence-related genes. In the pan-genome analysis, each complex possessed a similar pattern of cluster for orthologous groups. Group A (n = 185) had 14,066 cloud genes, 2,465 shell genes, 682 soft-core genes, and 2,553 strict-core genes. Group B (n = 181) had 39,867 cloud genes, 4,986 shell genes, 324 soft-core genes, 222 core genes, and 2,949 strict-core genes. AntiSMASH was employed to analyze the biosynthetic gene cluster (BGC). The results were then utilized for network analysis using BiG-SCAPE and CORASON. Principal component analysis was conducted and a table was constructed using the results obtained from antiSMASH. The results were divided into Group A and Group B. We expected the various species to show similar patterns of secondary metabolite gene clusters. For in-depth analysis, a network analysis of secondary metabolite gene clusters was conducted, exemplified by BiG-SCAPE analysis. Depending on the species and complex, Burkholderia possessed several kinds of siderophore. Among them, ornibactin was possessed in most Burkholderia and was clustered into 4,062 clans. There was a similar pattern of gene clusters depending on the species. NRPS_04014 belonged to siderophore BGCs including ornibactin and indigoidine. However, it was observed that each family included a similar species. This suggests that, besides siderophores being species-specific, the ornibactin gene cluster itself might also be species-specific. The results suggest that siderophores are associated with environmental adaptation, possessing a similar pattern of siderophore gene clusters among species, which could provide another perspective on species-specific environmental adaptation mechanisms.

3.
BMC Genomics ; 23(1): 375, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585492

RESUMEN

BACKGROUND: While the genus Variovorax is known for its aromatic compound metabolism, no detailed study of the peripheral and central pathways of aromatic compound degradation has yet been reported. Variovorax sp. PAMC26660 is a lichen-associated bacterium isolated from Antarctica. The work presents the genome-based elucidation of peripheral and central catabolic pathways of aromatic compound degradation genes in Variovorax sp. PAMC26660. Additionally, the accessory, core and unique genes were identified among Variovorax species using the pan genome analysis tool. A detailed analysis of the genes related to xenobiotic metabolism revealed the potential roles of Variovorax sp. PAMC26660 and other species in bioremediation. RESULTS: TYGS analysis, dDDH, phylogenetic placement and average nucleotide identity (ANI) analysis identified the strain as Variovorax sp. Cell morphology was assessed using scanning electron microscopy (SEM). On analysis of the core, accessory, and unique genes, xenobiotic metabolism accounted only for the accessory and unique genes. On detailed analysis of the aromatic compound catabolic genes, peripheral pathway related to 4-hydroxybenzoate (4-HB) degradation was found among all species while phenylacetate and tyrosine degradation pathways were present in most of the species including PAMC26660. Likewise, central catabolic pathways, like protocatechuate, gentisate, homogentisate, and phenylacetyl-CoA, were also present. The peripheral pathway for 4-HB degradation was functionally tested using PAMC26660, which resulted in the growth using it as a sole source of carbon. CONCLUSIONS: Computational tools for genome and pan genome analysis are important to understand the behavior of an organism. Xenobiotic metabolism-related genes, that only account for the accessory and unique genes infer evolution through events like lateral gene transfer, mutation and gene rearrangement. 4-HB, an aromatic compound present among lichen species is utilized by lichen-associated Variovorax sp. PAMC26660 as the sole source of carbon. The strain holds genes and pathways for its utilization. Overall, this study outlines the importance of Variovorax in bioremediation and presents the genomic information of the species.


Asunto(s)
Parabenos , Xenobióticos , Carbono , Filogenia
4.
Genes Genomics ; 44(6): 733-746, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35486322

RESUMEN

BACKGROUND: The genus Microbacterium belongs to the family Microbacteriaceae and phylum Actinobacteria. A detailed study on the complete genome and systematic comparative analysis of carbohydrate-active enzyme (CAZyme) among the Microbacterium species would add knowledge on metabolic and environmental adaptation. Here we present the comparative genomic analysis of CAZyme using the complete genome of Antarctic Microbacterium sp. PAMC28756 with other complete genomes of 31 Microbacterium species available. OBJECTIVE: The genomic and CAZyme comparison of Microbacterium species and to rule out the specific features of CAZyme for the environmental and metabolic adaptation. METHODS: Bacterial source were collected from NCBI database, CAZyme annotation of Microbacterium species was analyzed using dbCAN2 Meta server. Cluster of orthologous groups (COGs) analysis was performed using the eggNOG4.5 database. Whereas, KEGG database was used to compare and obtained the functional genome annotation information in carbohydrate metabolism and glyoxylate cycle. RESULTS: Out of 32 complete genomes of Microbacterium species, strain No. 7 isolated from Activated Sludge showed the largest genomic size at 4.83 Mb. The genomic size of PAMC28756 isolated from Antarctic lichen species Stereocaulons was 3.54 Mb, the G + C content was 70.4% with 3,407 predicted genes, of which 3.36% were predicted CAZyme. In addition, while comparing the Glyoxylate cycle among 32 bacteria, except 10 strains, all other, including our strain have Glyoxylate pathway. PAMC28756 contained the genes that degrade cellulose, hemicellulose, amylase, pectinase, chitins and other exo-and endo glycosidases. Utilizing these polysaccharides can provides source of energy in an extreme environment. In addition, PAMC28756 assigned the (10.15%) genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation. CONCLUSIONS: The genomic content and CAZymes distribution was varied in Microbacterium species. There was the presence of more than 10% genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation. In addition, occurrence of glyoxylate cycle for alternative utilization of carbon sources suggest the adaptation of PAMC28756 in the harsh microenvironment.


Asunto(s)
Genoma Bacteriano , Microbacterium , Bacterias/genética , Carbohidratos , Glioxilatos , Polisacáridos/metabolismo
5.
BMC Genomics ; 22(1): 403, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078272

RESUMEN

BACKGROUND: The Arthrobacter group is a known set of bacteria from cold regions, the species of which are highly likely to play diverse roles at low temperatures. However, their survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of 16 strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that help it to survive in the cold environment. RESULTS: Using 16 S rRNA sequence analysis, we found and identified a species of Arthrobacter isolated from cryoconite. We designated it as strain PAMC25564 and elucidated its complete genome sequence. The genome of PAMC25564 is composed of a circular chromosome of 4,170,970 bp with a GC content of 66.74 % and is predicted to include 3,829 genes of which 3,613 are protein coding, 147 are pseudogenes, 15 are rRNA coding, and 51 are tRNA coding. In addition, we provide insight into the redundancy of the genes using comparative genomics and suggest that PAMC25564 has glycogen and trehalose metabolism pathways (biosynthesis and degradation) associated with carbohydrate active enzyme (CAZymes). We also explain how the PAMC26654 produces energy in an extreme environment, wherein it utilizes polysaccharide or carbohydrate degradation as a source of energy. The genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how they adapt and survive in such environments. CONCLUSIONS: We have characterized the complete Arthrobacter sp. PAMC25564 genome and used comparative analysis to provide insight into the redundancy of its CAZymes for potential cold adaptation. This provides a foundation to understanding how the Arthrobacter strain produces energy in an extreme environment, which is by way of CAZymes, consistent with reports on the use of these specialized enzymes in cold environments. Knowledge of glycogen metabolism and cold adaptation mechanisms in Arthrobacter species may promote in-depth research and subsequent application in low-temperature biotechnology.


Asunto(s)
Arthrobacter , Regiones Antárticas , Arthrobacter/genética , Composición de Base , Hibridación Genómica Comparativa , Genoma Bacteriano
6.
Arch Microbiol ; 203(4): 1731-1742, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33459813

RESUMEN

Study of carbohydrate-active enzymes (CAZymes) can reveal information about the lifestyle and behavior of an organism. Rhodococcus species is well known for xenobiotic metabolism; however, their carbohydrate utilization ability has been less discussed till date. This study aimed to present the CAZyme analysis of two Rhodococcus strains, PAMC28705 and PAMC28707, isolated from lichens in Antarctica, and compare them with other Rhodococcus, Mycobacterium, and Corynebacterium strains. Genome-wide computational analysis was performed using various tools. Results showed similarities in CAZymes across all the studied genera. All three genera showed potential for significant polysaccharide utilization, including starch, cellulose, and pectin referring their biotechnological potential. Keeping in mind the pathogenic strains listed across all three genera, CAZymes associated to pathogenicity were analyzed too. Cutinase enzyme, which has been associated with phytopathogenicity, was abundant in all the studied organisms. CAZyme gene cluster of Rhodococcus sp. PAMC28705 and Rhodococcus sp. PAMC28707 showed the insertion of cutinase in the cluster, further supporting their possible phytopathogenic properties.


Asunto(s)
Celulosa/metabolismo , Genoma Bacteriano/genética , Polisacáridos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Regiones Antárticas , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Líquenes/microbiología , Pectinas/metabolismo , Rhodococcus/aislamiento & purificación , Secuenciación Completa del Genoma
7.
Genes Genomics ; 42(9): 1087-1096, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32737807

RESUMEN

BACKGROUND: Spingobium sp. PAMC 28499 is isolated from the glaciers of Uganda. Uganda is a unique region where hot areas and glaciers coexist, with a variety of living creatures surviving, but the survey on them is very poor. The genetic character and complete genome information of Sphingobium strains help with environmental studies and the development of better to enzyme industry. OBJECTIVE: In this study, complete genome sequence of Spingobium sp. PAMC 28499 and comparative analysis of Spingobium species strains isolated from variety of the region. METHODS: Genome sequencing was performed using PacBio sequel single-molecule real-time (SMRT) sequencing technology. The predicted gene sequences were functionally annotated and gene prediction was carried out using the program NCBI non-redundant database. And using dbCAN2 and KEGG data base were degradation pathway predicted and protein prediction about carbohydrate active enzymes (CAZymes). RESULTS: The genome sequence has 64.5% GC content, 4432 coding protein coding genes, 61 tRNAs, and 12 rRNA operons. Its genome encodes a simple set of metabolic pathways relevant to pectin and its predicted degradation protein an unusual distribution of CAZymes with extracellular esterases and pectate lyases. CAZyme annotation analyses revealed 165 genes related to carbohydrate active, and especially we have found GH1, GH2, GH3, GH38, GH35, GH51, GH51, GH53, GH106, GH146, CE12, PL1 and PL11 such as known pectin degradation genes from Sphingobium yanoikuiae. These results confirmed that this Sphingobium sp. strain PAMC 28499 have similar patterns to RG I pectin-degrading pathway. CONCLUSION: In this study, isolated and sequenced the complete genome of Spingobium sp. PAMC 28499. Also, this strain has comparative genome analysis. Through the complete genome we can predict how this strain can store and produce energy in extreme environment. It can also provide bioengineered data by finding new genes that degradation the pectin.


Asunto(s)
Polisacárido Liasas/genética , Sphingomonadaceae/genética , Sphingomonas/genética , Composición de Base/genética , Secuencia de Bases/genética , Mapeo Cromosómico/métodos , Genoma Bacteriano/genética , Genómica/métodos , Pectinas/metabolismo , Filogenia , Sphingomonadaceae/enzimología , Sphingomonadaceae/metabolismo , Sphingomonas/metabolismo , Uganda , Secuenciación Completa del Genoma/métodos
8.
Curr Microbiol ; 77(10): 2940-2952, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32681312

RESUMEN

The genus Hymenobacter is classified in the family Hymenobacteraceae under the phylum Bacteroidetes. They have been isolated from diverse environments, such as air, soil, and lichen, along with extreme polar environments, including the Arctic and Antarctic regions. The polar regions have attracted intense research interest for the discovery of novel microorganisms and their functions. Analysis of the polysaccharide utilization-related carbohydrate-active enzyme among the two lichen-associated polar organisms Hymenobacter sp. PAMC 26554 and Hymenobacter sp. PAMC 26628 was performed, along with its comparison with the complete genome of the same genus available in the NCBI database. The study was conducted relying on the AZCL screening data for the two polar lichen-associated species. While comparing with eight other complete genomes, differences in polysaccharide preferences based on the isolation environment and biosample source were discovered. All the species showed almost similar percentage of cellulose synthesis and degradation genes. However, the polar lichen-associated microorganism was found to have a high percentage of hemicellulose degradation genes, and less starch and laminarin degradation. The Hymenobacter species with higher number of hemicellulose degradation genes was found to have a lower number of starch and laminarin degradation genes and vice versa, highlighting the differences in polysaccharide utilization among the species.


Asunto(s)
Cytophagaceae , Líquenes , Regiones Antárticas , Técnicas de Tipificación Bacteriana , Composición de Base , Cytophagaceae/genética , ADN Bacteriano , Ecosistema , Ácidos Grasos/análisis , Genómica , Filogenia , Polisacáridos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Front Plant Sci ; 11: 630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528499

RESUMEN

Coix lacryma-jobi, also called adlay or Job's tears, is an annual herbal plant belonging to the Poaceae family that has been cultivated as a cereal and medicinal crop in Asia. Despite its importance, however, genomic resources for better understanding this plant species at the molecular level and informing improved breeding strategies remain limited. To address this, we generated a draft genome of the C. lacryma-jobi variety ma-yuen (soft-shelled adlay) Korean cultivar, Johyun, by de novo assembly, using PacBio and Illumina sequencing data. A total of 3,362 scaffold sequences, 1.28 Gb in length, were assembled, representing 82.1% of the estimated genome size (1.56 Gb). Genome completeness was confirmed by the presence of 91.4% of the BUSCO angiosperm genes and mapping ratio of 98.3% of Illumina paired-end reads. We found that approximately 77.0% of the genome is occupied by repeat sequences, most of which are Gypsy and Copia-type retrotransposons, and evidence-based genome annotation predicts 39,574 protein-coding genes, 85.5% of which were functionally annotated. We further predict that soft-shelled adlay diverged from a common ancestor with sorghum 9.0-11.2 MYA. Transcriptome profiling revealed 3,988 genes that are differentially expressed in seeds relative to other tissues, of which 1,470 genes were strongly up-regulated in seeds and the most enriched Gene Ontology terms were assigned to carbohydrate and protein metabolism. In addition, we identified 76 storage protein genes including 18 seed-specific coixin genes and 13 candidate genes involved in biosynthesis of benzoxazinoids (BXs) including coixol, a unique BX compound found in C. lacryma-jobi species. The characterization of those genes can further our understanding of unique traits of soft-shelled adlay, such as high seed protein content and medicinal compound biosynthesis. Taken together, our genome sequence data will provide a valuable resource for molecular breeding and pharmacological study of this plant species.

10.
Microb Pathog ; 137: 103759, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31560973

RESUMEN

Shigella sp. PAMC 28760 (isolated from Himantormia sp. lichen in Antarctica) is a gram-negative, non-sporulating bacterium that has cellulolytic and amylolytic characteristics as well as glycogen metabolic pathways. In this study, we isolated S. sp. PAMC 28760 from Antarctic lichen, and present the complete genome sequence with annotations describing its unique features. The genome sequence has 58.85% GC content, 4,278 coding DNA sequences, 85 tRNAs, and 22 rRNA operons. 16S rRNA gene sequence analyses revealed strain PAMC 28760 as a potentially new species of genus Shigella, showing various differences from pathogenic bacteria reported previously. dbCAN2 analyses revealed 91 genes related to carbohydrate-metabolizing enzymes. S. sp. PAMC 28760 likely degrades polysaccharide starch to obtain glucose for energy conservation. This study provides a foundation for understanding Shigella survival adaptation mechanisms under extremely cold Antarctic conditions.


Asunto(s)
Glucógeno/metabolismo , Shigella/enzimología , Shigella/genética , Shigella/aislamiento & purificación , Secuenciación Completa del Genoma , Adaptación Fisiológica , Regiones Antárticas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , Frío , ADN Bacteriano/genética , Genes Bacterianos/genética , Genoma Bacteriano , Líquenes/microbiología , Filogenia , ARN Ribosómico 16S/genética , Shigella/clasificación
11.
J Microbiol Biotechnol ; 29(7): 1144-1154, 2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31288301

RESUMEN

There have been several studies regarding lichen-associated bacteria obtained from diverse environments. Our screening process identified 49 bacterial species in two lichens from the Himalayas: 17 species of Actinobacteria, 19 species of Firmicutes, and 13 species of Proteobacteria. We discovered five types of strong antimicrobial agent-producing bacteria. Although some strains exhibited weak antimicrobial activity, NP088, NP131, NP132, NP134, and NP160 exhibited strong antimicrobial activity against all multidrug-resistant strains. Polyketide synthase (PKS) fingerprinting revealed results for 69 of 148 strains; these had similar genes, such as fatty acid-related PKS, adenylation domain genes, PfaA, and PksD. Although the association between antimicrobial activity and the PKS fingerprinting results is poorly resolved, NP160 had six types of PKS fingerprinting genes, as well as strong antimicrobial activity. Therefore, we sequenced the draft genome of strain NP160, and predicted its secondary metabolism using antiSMASH version 4.2. NP160 had 46 clusters and was predicted to produce similar secondary metabolites with similarities of 5-100%. Although NP160 had 100% similarity with the alkylresorcinol biosynthetic gene cluster, our results showed low similarity with existing members of this biosynthetic gene cluster, and most have not yet been revealed. In conclusion, we expect that lichen-associated bacteria from the Himalayas can produce new secondary metabolites, and we found several secondary metabolite-related biosynthetic gene clusters to support this hypothesis.


Asunto(s)
Antiinfecciosos/metabolismo , Genoma Bacteriano/genética , Líquenes/microbiología , Streptomyces/genética , Streptomyces/metabolismo , Antiinfecciosos/farmacología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Secuencia de Bases , Dermatoglifia del ADN , ADN Bacteriano/genética , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Filogenia , Sintasas Poliquetidas/genética , ARN Ribosómico 16S/genética , Metabolismo Secundario/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...