Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(28): 18307-18313, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958360

RESUMEN

Phonon engineering at the nanoscale holds immense promise for a myriad of applications. However, the design of phononic devices continues to rely on regular shapes chosen according to long-established simple rules. Here, we demonstrate an inverse design approach to create a two-dimensional phononic metasurface exhibiting a highly anisotropic phonon dispersion along the main axes of the Brillouin zone. A partial hypersonic bandgap of approximately 3.5 GHz is present along one axis, with gap closure along the orthogonal axis. Such a level of control is achieved through genetically optimized unit cells, with shapes exceeding conventional intuition. We experimentally validated our theoretical predictions using Brillouin light scattering, confirming the effectiveness of the inverse design method. Our approach unlocks the potential for automated engineering of phononic metasurfaces with on-demand functionalities, thus leading toward innovative phononic devices beyond the limitations of traditional design paradigms.

2.
Phys Rev Lett ; 132(18): 186904, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759170

RESUMEN

We experimentally demonstrate the enhancement of the far-field thermal radiation between two nonabsorbent Si microplates coated with energy-absorbent silicon dioxide (SiO_{2}) nanolayers supporting the propagation of surface phonon polaritons. By measuring the radiative thermal conductance between two coated Si plates, we find that its values are twice those obtained without the SiO_{2} coating. This twofold increase results from the hybridization of polaritons with guided modes inside Si and is well predicted by fluctuational electrodynamics and an analytical model based on a two-dimensional density of polariton states. These findings could be applied to thermal management in microelectronics, silicon photonics, energy conversion, atmospheric sciences, and astrophysics.

3.
ACS Nano ; 18(15): 10557-10565, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38575375

RESUMEN

Nanostructured semiconductors promise functional thermal management for microelectronics and thermoelectrics through a rich design capability. However, experimental studies on anisotropic in-plane thermal conduction remain limited, despite the demand for directional heat dissipation. Here, inspired by an oriental wave pattern, a periodic network of bent wires, we investigate anisotropic in-plane thermal conduction in nanoscale silicon phononic crystals with the thermally dead volume. We observed the anisotropy reversal of the material thermal conductivity from 1.2 at 300 K to 0.8 at 4 K, with the reversal temperature of 80 K mediated by the transition from a diffusive to a quasi-ballistic regime. Our Monte Carlo simulations revealed that the backflow of the directional phonons induces the anisotropy reversal, showing that the quasi-ballistic phonon transport introduces preferential thermal conduction channels with anomalous temperature dependence. Accordingly, the anisotropy of the effective thermal conductivity varied from 2.7 to 5.0 in the range of 4-300 K, indicating an anisotropic heat manipulation capability. Our findings demonstrate that the design of nanowire networks enables the directional thermal management of electronic devices.

4.
Appl Opt ; 59(28): 9067-9074, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33104597

RESUMEN

In this investigation, we describe a simple cyclic radial shearing interferometer for single-shot wavefront sensing. Instead of using the telescope lens system used in typical radial shearing interferometry, a single lens is used to generate two diverging radial shearing beams. This simple modification leads to the advantages of conveniently adjusting the radial shearing ratio, compactness of the system, and practical ease of alignment. With the aid of a polarization pixelated CMOS camera, the spatial phase-shifting technique is used to extract the phase with a single image. The most important feature is the fringe contrast enhancement by reducing the aberrations caused by the complicated optical system even though an incoherent light is used. The experimental results show the fringe contrast enhancement is at least 0.1 better than that of the conventional method, and the wavefronts are properly reconstructed with less than 0.071λ root-mean-squared wavefront error regardless of the coherence of the light.

5.
Opt Express ; 27(14): 19758-19767, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503731

RESUMEN

We discuss how to realize rigorous single pulse imaging using a fiber mode-locked laser for the purpose of ultrafast interferometric observation of fast varying dynamic objects. Sub-picosecond pulses are readily picked up in synchronization with the camera operation, allocating one pulse per frame, but rigorous ultrashort single pulse imaging is disturbed by the accumulation of amplified spontaneous emission (ASE) over the exposure time of the camera. Here, we propose four distinct methods to eliminate the ASE-accumulated disruption in the ultrashort optical gating by pulse interferometry and then evaluate their merits and limitations individually by experiments. The proposed four methods are referred to respectively as the time averaged phase modulation, unbalanced pulse overlapping, tandem pulse picking, and second harmonic generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...