Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sci Rep ; 14(1): 4633, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409437

RESUMEN

Hydrophobic surfaces have a wide range of applications, such as water harvesting, self-cleaning, and anti-biofouling. However, traditional methods of achieving hydrophobicity often involve the use of toxic materials such as fluoropolymers. This study aims to create controllable wettability surfaces with a three-dimensional geometry using a laser base powder bed fusion (PBF) process with commercially pure titanium (CP-Ti) and silicone oil as non-toxic materials. The optimal PBF process parameters for fabricating micropillar structures, which are critical for obtaining the surface roughness necessary for achieving hydrophobic properties, were investigated experimentally. After fabricating the micropillar structures using PBF, their surface energy was reduced by treatment with silicone oil. Silicone oil provides a low-surface-energy coating that contributes to the water-repellent nature of hydrophobic surfaces. The wettability of the treated CP-Ti surfaces was evaluated based on the diameter of the pillars and the space between them. The structure with the optimal diameter and spacing of micropillars exhibited a high contact angle (156.15°). A pronounced petal effect (sliding angle of 25.9°) was achieved because of the morphology of the pillars, indicating the controllability of wetting. The micropillar diameter, spacing, and silicone oil played crucial roles in determining the water contact and sliding angle, which are key metrics for surface wettability.

2.
Acta Otolaryngol ; 143(5): 429-433, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37148316

RESUMEN

BACKGROUND: Patients with cartilage invasion in hypopharyngeal squamous cell carcinoma (HPSCC) would benefit from partial laryngopharyngectomy (PLP). AIMS/OBJECTIVES: The purpose of this study was to examine the treatment outcomes of PLP for HPSCC with cartilage invasion, with a focus on the oncological safety and the function preservation. MATERIALS AND METHODS: We performed a retrospective review of 28 patients with HPSCC with thyroid or cricoid cartilage invasion who had undergone upfront surgery and were followed for more than one year between 1993 and 2019. RESULTS: Twelve patients treated with PLP (42.9%) and 16 patients treated with total laryngopharyngectomy (TLP) for cartilage invasion in HPSCC were identified. There was no significant difference in recurrence between the PLP group (7/12, 58.3%) and the TLP group (8/16, 50.0%) (p = .718). PLP was not associated with decreased five-year disease free survival (p = .662) or disease specific survival (p = .883) rates compared to TLP. Nine patients receiving PLP could be decannulated and retained intelligible speech (9/12, 75%). Gastrostomy tubes were placed in the PLP group (5/12, 42.9%) and TLP group (1/16, 6.2%) (p = .057). CONCLUSIONS AND SIGNIFICANCE: PLP appears to be a feasible option for the treatment of thyroid or cricoid cartilage invasion in HPSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Hipofaríngeas , Humanos , Glándula Tiroides/patología , Cartílago Cricoides/cirugía , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Laringectomía , Estudios Retrospectivos , Neoplasias de Cabeza y Cuello/cirugía
3.
ACS Appl Mater Interfaces ; 14(48): 53999-54011, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36444765

RESUMEN

It has been challenging to synthesize p-type SnOx (1 < x < 2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band. Herein, we report on the multifunctional encapsulation of p-SnOx to limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOx channel for thin-film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements identified that ultrathin SiO2 as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOx and selectively diffused hydrogen across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current (on/off ratio > 103), field effect mobility of 3.41 cm2/(V s), and threshold voltages of ∼5-10 V. The fabricated devices show minimal deviations as small as ±6% in the TFT performance parameters, which demonstrates good reproducibility of the fabrication process. The relevance between the TFT performance and the effects of hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. Density functional theory calculations reveal that hydrogen-related impurity complexes are in charge of the enhanced channel conductance with gate biases, which further supports the selective permeation of hydrogen through a thin SiO2 encapsulation.

4.
Polymers (Basel) ; 14(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35745949

RESUMEN

Polydimethylsiloxane (PDMS) is widely utilised as a substrate for wearable (stretchable) electronics where high fatigue resistance is required. Cyclic loadings cause the rearrangement of the basic molecular structure of polymer chains, which leads to changes in the mechanical properties of the PDMS structure. Accordingly, it is necessary to investigate reliable mechanical properties of PDMS considering both monotonic and cyclic loading conditions. This study aims to present the mechanical properties of PDMS films against both monotonic and cyclic loading. The effects of certain parameters, such as film thickness and magnitude of tensile strain, on mechanical properties are also investigated. The test results show that PDMS films have a constant monotonic elastic modulus regardless of the influence of thickness and tensile loading, whereas a cyclic elastic modulus changes depending on experimental parameters. Several material parameters, such as neo-Hookean, Mooney-Rivlin, the third-order Ogden model, and Yeoh, are defined to mimic the stress-strain behaviours of the PDMS films. Among them, it is confirmed that the third-order Ogden model is best suited for simulating the PDMS films over the entire tensile test range. This research makes contributions not only to understanding the mechanical behaviour of the PDMS films between the monotonic and the cycle loadings, but also through providing trustworthy hyperelastic material coefficients that enable the evaluation of the structural integrity of the PDMS films using the finite element technique.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34947728

RESUMEN

Efficient water electrolysis is one of the key issues in realizing a clean and renewable energy society based on hydrogen fuel. However, several obstacles remain to be solved for electrochemical water splitting catalysts, which are the high cost of noble metals and the high overpotential of alternative catalysts. Herein, we suggest Ni-based alternative catalysts that have comparable performances with precious metal-based catalysts and could be applied to both cathode and anode by precise phase control of the pristine catalyst. A facile microwave-assisted procedure was used for NiO nanoparticles anchored on reduced graphene oxide (NiO NPs/rGO) with uniform size distribution in ~1.8 nm. Subsequently, the Ni-NiO dual phase of the NPs (A-NiO NPs/rGO) could be obtained via tailored partial reduction of the NiO NPs/rGO. Moreover, we demonstrate from systematic HADDF-EDS and XPS analyses that metallic Ni could be formed in a local area of the NiO NP after the reductive annealing procedure. Indeed, the synergistic catalytic performance of the Ni-NiO phase of the A-NiO NPs/rGO promoted hydrogen evolution reaction activity with an overpotential as 201 mV at 10 mA cm-2, whereas the NiO NPs/rGO showed 353 mV. Meanwhile, the NiO NPs/rGO exhibited the most excellent oxygen evolution reaction performance among all of the Ni-based catalysts, with an overpotential of 369 mV at 10 mA cm-2, indicating that they could be selectively utilized in the overall water splitting. Furthermore, both catalysts retained their activities over 12 h with constant voltage and 1000 cycles under cyclic redox reaction, proving their high durability. Finally, the full cell capability for the overall water electrolysis system was confirmed by observing the generation of hydrogen and oxygen on the surface of the cathode and anode.

6.
ACS Appl Mater Interfaces ; 13(46): 55676-55686, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34779629

RESUMEN

The fabrication of oxide-based p-n heterojunctions that exhibit high rectification performance has been difficult to realize using standard manufacturing techniques that feature mild vacuum requirements, low thermal budget processing, and scalability. Critical bottlenecks in the fabrication of these heterojunctions include the narrow processing window of p-type oxides and the charge-blocking performance across the metallurgical junction required for achieving low reverse current and hence high rectification behavior. The overarching goal of the present study is to demonstrate a simple processing route to fabricate oxide-based p-n heterojunctions that demonstrate high on/off rectification behavior, a low saturation current, and a small turn-on voltage. For this study, room-temperature sputter-deposited p-SnOx and n-InGaZnO (IGZO) films were chosen. SnOx is a promising p-type oxide material due to its monocationic system that limits complexities related to processing and properties, compared to other multicationic oxide materials. For the n-type oxide, IGZO is selected due to the knowledge that postprocessing annealing critically reduces the defect and trap densities in IGZO to ensure minimal interfacial recombination and high charge-blocking performance in the heterojunctions. The resulting oxide p-n heterojunction exhibits a high rectification ratio greater than 103 at ±3 V, a low saturation current of ∼2 × 10-10 A, and a small turn-on voltage of ∼0.5 V. In addition, the demonstrated oxide p-n heterojunctions exhibit excellent stability over time in air due to the p-SnOx with completed reaction annealing in air and the reduced trap density in n-IGZO.

7.
Ultramicroscopy ; 226: 113304, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33964613

RESUMEN

The use of electron mirrors in aberration correction and surface-sensitive microscopy techniques such as low-energy electron microscopy has been established. However, in this work, by implementing an easy to construct, fully electrostatic electron mirror system under a sample in a conventional scanning electron microscope (SEM), we present a new imaging scheme which allows us to form scanned images of the top and bottom surfaces of the sample simultaneously. We believe that this imaging scheme could be of great value to the field of in-situ SEM which has been limited to observation of dynamic changes such as crack propagation and other surface phenomena on one side of samples at a time. We analyze the image properties when using a flat versus a concave electron mirror system and discuss two different regimes of operation. In addition to in-situ SEM, we foresee that our imaging scheme could open up avenues towards spherical aberration correction by the use of electron mirrors in SEMs without the need for complex beam separators.

8.
ACS Appl Mater Interfaces ; 13(5): 6805-6812, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33497202

RESUMEN

We report facile growth methods for high-quality monolayer and multilayer MoS2 films using MoOCl4 as the vapor-phase molecular Mo precursor. Compared to the conventional covalent solid-type Mo precursors, the growth pressure of MoOCl4 can be precisely controlled. This enables the selection of growth mode by adjusting growth pressure, which facilitates the control of the growth behavior as the growth termination at a monolayer or as the continuous growth to a multilayer. In addition, the use of carbon-free precursors eliminates concerns about carbon contamination in the produced MoS2 films. Systematic studies for unveiling the growth mechanism proved two growth modes, which are predominantly the physisorption and chemisorption of MoOCl4. Consequently, the thickness of MoS2 can be controlled by our method as the application demands.

9.
RSC Adv ; 11(45): 28342-28346, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35480747

RESUMEN

Amorphous cobalt-calcium phosphate composite (CCPC) films are electrochemically prepared on various electrodes by utilizing the solid phase of hydroxyapatite as a phosphate source. The CCPC film formation is surface process in which the dissolution of hydroxyapatite and the deposition of CCPC film concurrently occur on the electrode surface without the mass transfer of phosphate ions into the bulk solution. Elemental, crystallographic, and morphological analyses (EDX, ICP-AES, XPS, and XRD) indicate that the CCPC is composed of amorphous cobalt oxide with calcium and phosphate. The film exhibits durable oxygen evolution reaction (OER) catalytic properties under neutral and basic aqueous condition. Compared to using solution phase of phosphate source, our preparation method utilizing solid hydroxyapatite has advantage of preventing unnecessary chemical reaction between phosphate and other chemical species in bulk solution.

10.
Nanotechnology ; 32(14): 145709, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33326944

RESUMEN

The microstructural evolutions in self-catalyzed GaAs nanowires (NWs) were investigated by using in situ heating transmission electron microscopy (TEM). The morphological changes of the self-catalyst metal gallium (Ga) droplet, the GaAs NWs, and the atomic behavior at the interface between the self-catalyst metal gallium and GaAs NWs were carefully studied by analysis of high-resolution TEM images. The microstructural change of the Ga-droplet/GaAs-NWs started at a low temperature of ∼200 °C. Formation and destruction of atomic layers were observed at the Ga/GaAs interface and slow depletion of the Ga droplet was detected in the temperature range investigated. Above 300 °C, the evolution process dramatically changed with time: The Ga droplet depleted rapidly and fast growth of zinc-blende (ZB) GaAs structures were observed in the droplet. The Ga droplet was completely removed with time and temperature. When the temperature reached ∼600 °C, the decomposition of GaAs was detected. This process began in the wurtzite (WZ) structure and propagated to the ZB structure. The morphological and atomistic behaviors in self-catalyzed GaAs NWs were demonstrated based on thermodynamic considerations, in addition to the effect of the incident electron beam in TEM. Finally, GaAs decomposition was demonstrated in terms of congruent vaporization.

11.
Am J Geriatr Psychiatry ; 28(12): 1308-1316, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33023798

RESUMEN

OBJECTIVE: This study aimed to investigate the different clinical characteristics among elderly coronavirus disease 2019 (COVID-19) patients with and without mental disorders in South Korea and determine if these characteristics have an association with underlying mental disorders causing mortality. METHOD: A population-based comparative cohort study was conducted using the national claims database. Individuals aged ≥65 years with confirmed COVID-19 between January 1, 2020 and April 10, 2020 were assessed. The endpoints for evaluating mortality for all participants were death, 21 days after diagnosis, or April 10, 2020. The risk of mortality associated with mental disorders was estimated using Cox hazards regression. RESULTS: We identified 814 elderly COVID-19 patients (255 [31.3%] with mental disorder and 559 [68.7%] with nonmental disorder). Individuals with mental disorders were found more likely to be older, taking antithrombotic agents, and had diabetes, hypertension, chronic obstructive lung disease, and urinary tract infections than those without mental disorders. After propensity score stratification, our study included 781 patients in each group (236 [30.2%] with mental disorder and 545 [69.8%] with nonmental disorder). The mental disorder group showed higher mortality rates than the nonmental disorder group (12.7% [30/236] versus 6.8% [37/545]). However, compared to patients without mental disorders, the hazard ratio (HR) for mortality in elderly COVID-19 patients with mental disorders was not statistically significant (HR: 1.57, 95%CI: 0.95-2.56). CONCLUSION: Although the association between mental disorders in elderly individuals and mortality in COVID-19 is unclear, this study suggests that elderly patients with comorbid conditions and those taking psychiatric medications might be at a higher risk of COVID-19.


Asunto(s)
Infecciones por Coronavirus , Trastornos Mentales , Pandemias , Neumonía Viral , Anciano , Betacoronavirus , COVID-19 , Estudios de Cohortes , Comorbilidad , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/mortalidad , Femenino , Humanos , Masculino , Trastornos Mentales/epidemiología , Trastornos Mentales/virología , Salud Mental/estadística & datos numéricos , Neumonía Viral/diagnóstico , Neumonía Viral/mortalidad , Modelos de Riesgos Proporcionales , República de Corea/epidemiología , Medición de Riesgo , Factores de Riesgo , SARS-CoV-2
12.
Langmuir ; 36(39): 11538-11545, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32921056

RESUMEN

Oxygen (O2)-mediated controlled radical polymerization was performed on surfaces under ambient conditions, enabling on-surface polymer brush growth under open-to-air conditions at room temperature in the absence of metal components. Polymerization of zwitterionic monomers using this O2-mediated surface-initiated reversible addition fragmentation chain-transfer (O2-SI-RAFT) method yielded hydrophilic surfaces that exhibited anti-biofouling effects. O2-SI-RAFT polymerization can be performed on large surfaces under open-to-air conditions. Various monomers including (meth)acrylates and acrylamides were employed for O2-SI-RAFT polymerization; the method is thus versatile in terms of the polymers used for coating and functionalization. A wide range of hydrophilic and hydrophobic monomers can be employed. In addition, the end-group functionality of the polymer grown by O2-SI-RAFT polymerization allowed chain extension to form block copolymer brushes on a surface.

13.
Ultramicroscopy ; 217: 113053, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32623205

RESUMEN

Electron beams can acquire designed phase modulations by passing through nanostructured material phase plates. These phase modulations enable electron wavefront shaping and benefit electron microscopy, spectroscopy, lithography, and interferometry. However, in the fabrication of electron phase plates, the typically used focused-ion-beam-milling method limits the fabrication throughput and hence the active area of the phase plates. Here, we fabricated large-area electron phase plates with electron-beam lithography and reactive-ion-etching. The phase plates are characterized by electron diffraction in transmission electron microscopes with various electron energies, as well as diffractive imaging in a scanning electron microscope. We found the phase plates could produce a null in the center of the bright-field based on coherent interference of diffractive beams. Our work adds capabilities to the fabrication of electron phase plates. The nullification of the direct beam and the tunable diffraction efficiency demonstrated here also paves the way towards novel dark-field electron-microscopy techniques.

14.
Nanotechnology ; 31(4): 045302, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31578000

RESUMEN

Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology.

15.
Org Lett ; 21(24): 9950-9953, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31799856

RESUMEN

Organophotocatalytic C-C and C-B bond formation reactions of aryl halides have been developed in the presence of an organophotosensitizer, 3,7-di([1,1'-biphenyl]-4-yl)-10-(4-(trifluoromethyl)phenyl)-10H-phenoxazine that has highly negative reduction potential at its photoexcited state. The developed reaction conditions are mild and allow the intermolecular C-C bond formation of the generated aryl radical with electron-rich (hetero)arenes and C-B bond formation with bis(pinacolato)diboron.

16.
Nanoscale ; 11(14): 6685-6692, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30900707

RESUMEN

Sublimation is an interesting phenomenon that is frequently observed in nature. The thermal behavior of InAs NWs with As-face polarity and the [1[combining macron]1[combining macron]1[combining macron]] growth direction of the zinc blende structure were studied by using in situ transmission electron microscopy (TEM). In this study, the anisotropic morphological and atomistic evolution of InAs nanowires (NWs) was observed during decomposition. Two specific phenomena were observed during the continuous heating of the NWs as observed using the TEM: the decomposition of the InAs NWs around 380 °C, much lower than the melting temperature, and the formation of particular crystallographic facets during decomposition. The low decomposition temperature is related to vaporization under the vacuum conditions of the TEM. The anisotropic decomposition of the InAs NWs during heating can be explained based on the polarity and the surface energy difference of the zinc blende structure of InAs. For example, the decomposition along the [111] direction (that is, the indium-atom-terminated plane) was continuous, resulting in a few high-index planes, for example, (022), (3[combining macron]1[combining macron]1[combining macron]), and (200), whereas that in the opposite direction (the [1[combining macron]1[combining macron]1[combining macron]] direction) occurred abruptly with the formation of ledges and steps on the (1[combining macron]1[combining macron]1[combining macron]) planes, accompanied by the generation of small grooves on the surface of the NWs. Finally, density functional theory calculations were conducted to understand the sublimation of the InAs NWs from a theoretical point of view. This study is meaningful that it provides an insight into the microstructural evolution of polar nanomaterials during heating by theoretical and experimental approaches.

17.
Ultramicroscopy ; 199: 50-61, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30772718

RESUMEN

Quantum electron microscopy (QEM) is a measurement approach that could reduce sample radiation damage, which represents the main obstacle to sub-nanometer direct imaging of molecules in conventional electron microscopes. This method is based on the exploitation of interaction-free measurements in an electron resonator. In this work, we present the design of a linear resonant electron cavity, which is at the core of QEM. We assess its stability and optical properties during resonance using ray-tracing electron optical simulations. Moreover, we analyze the issue of spherical aberrations inside the cavity and we propose and verify through simulation two possible approaches to the problem. Finally, we discuss some of the important design parameters and constraints, such as conservation of temporal coherence and effect of alignment fields.

18.
Small ; 14(23): e1801023, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29717811

RESUMEN

Shape memory alloys (SMAs) are widely utilized as an actuation source in microscale devices, since they have a simple actuation mechanism and high-power density. However, they have limitations in terms of strain range and actuation speed. High-speed microscale SMA actuators are developed having diamond-shaped frame structures with a diameter of 25 µm. These structures allow for a large elongation range compared with bulk SMA materials, with the aid of spring-like behavior under tensile deformation. These actuators are validated in terms of their applicability as an artificial muscle in microscale by investigating their behavior under mechanical deformation and changes in thermal conditions. The shape memory effect is triggered by delivering thermal energy with a laser. The fast heating and cooling phenomenon caused by the scale effect allows high-speed actuation up to 1600 Hz. It is expected that the proposed actuators will contribute to the development of soft robots and biomedical devices.

19.
Nanoscale ; 10(4): 1598-1606, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29323393

RESUMEN

Full three dimensional (3D) simulations of ion implantation are necessary in a wide range of nanoscience and nanotechnology applications to capture the increasing effect of ion leakage out of surfaces. Using a recently developed 3D Monte Carlo simulation code IM3D, we first quantify the relative error of the 1D approach in three applications of nano-scale ion implantation: (1) nano-beam for nitrogen-vacancy (NV) center creation, (2) implantation of nanowires to fabricate p-n junctions, and (3) irradiation of nano-pillars for small-scale mechanical testing of irradiated materials. Because the 1D approach fails to consider the exchange and leakage of ions from boundaries, its relative error increases dramatically as the beam/target size shrinks. Lastly, the "Bragg peak" phenomenon, where the maximum radiation dose occurs at a finite depth away from the surface, relies on the assumption of broad beams. We discovered a topological transition of the point-defect or defect-cluster distribution isosurface when one varies the beam width, in agreement with a previous focused helium ion beam irradiation experiment. We conclude that full 3D simulations are necessary if either the beam or the target size is comparable or below the SRIM longitudinal ion range.

20.
RSC Adv ; 8(45): 25815-25818, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35539813

RESUMEN

In this study, we investigated the effect of hydrocarbon species composition on carbon nanotube (CNT) growth using an iron catalyst by chemical vapor deposition. The atomic hydrogen and active carbon species from hydrocarbon affect to the nucleation and growth of CNT arrays. With increasing atomic hydrogen content, the interface layer distance of the CNTs decreased from 3.7 to 3.4 Å. The shifts in the G-band in the Raman spectra of the CNTs indicated that the hydrogen atoms affected the generation of C-C bonds in graphene layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...