Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(28): 32261-32269, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35797493

RESUMEN

Neuromorphic devices have been extensively studied to overcome the limitations of a von Neumann system for artificial intelligence. A synaptic device is one of the most important components in the hardware integration for a neuromorphic system because a number of synaptic devices can be connected to a neuron with compactness as high as possible. Therefore, synaptic devices using silicon-based memory, which are advantageous for a high packing density and mass production due to matured fabrication technologies, have attracted considerable attention. In this study, a segmented transistor devoted to an artificial synapse is proposed for the first time to improve the linearity of the potentiation and depression (P/D). It is a complementary metal oxide semiconductor (CMOS)-compatible device that harnesses both non-ohmic Schottky junctions of the source and drain for improved weight linearity and double-layered nitride for enhanced speed. It shows three distinct and unique segments in drain current-gate voltage transfer characteristics induced by Schottky junctions. In addition, the different stoichiometries of SixNy for a double-layered nitride is utilized as a charge trap layer for boosting the operation speed. This work can bring the industry potentially one step closer to realizing the mass production of hardware-based synaptic devices in the future.

2.
Micromachines (Basel) ; 12(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34442521

RESUMEN

For the first time, a novel germanium (Ge) bi-stable resistor (biristor) with a vertical pillar structure was implemented on a bulk substrate. The basic structure of the Ge pillar-typed biristor is a p-n-p bipolar junction transistor (BJT) with an open base (floating), which is equivalent to a gateless p-channel metal oxide semiconductor field-effect transistor (MOSFET). In the pillar formation, we adopted an amorphous carbon layer to protect the Ge surface from both physical and chemical damage by subsequent processes. A hysteric current-voltage (I-V) characteristic, which results in a sustainable binary state, i.e., high current and low current at the same voltage, can be utilized for a memory device. A lower operating voltage with high current was achieved, compared to a Si biristor, due to the low energy bandgap of pure Ge.

3.
Sci Rep ; 9(1): 7120, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053758

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Sci Rep ; 8(1): 14953, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297916

RESUMEN

Microwave-induced thermal curing is demonstrated to improve the reliability and to prolong the lifetime of chips containing nanoscale electron devices. A film containing graphite powder with high microwave absorbing efficiency was fabricated at low cost. The film is flexible, bendable, foldable, and attachable to a chip. A commercial off-the-shelf chip and a representative 3-dimensional (3D) metal-oxide-semiconductor field-effect transistor (MOSFET), known as FinFET, were utilized to verify the curing behaviors of the microwave-induced heat treatment. The heat effectively cured not only total ionizing dose (TID) damage from the external environment, but also internal electrical stress such as hot-carrier injection (HCI), which are representative sources of damages in MOSFET insulators. Then, the characteristics of the pre- and post-curing electron devices are investigated using electrical measurements and numerical simulations.

5.
Sci Rep ; 8(1): 14996, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30301910

RESUMEN

A frequency reconfigurable dipole antenna based on a silicon radiator is presented. The silicon radiator is activated with the aid of highly dense solid-state plasma by injecting carriers into the intrinsic region of p-i-n diodes. The fabrication and design guideline of the reconfigurable dipole antenna with this plasma radiator are described. When the plasma radiator is activated or deactivated, the length of the dipole arm changes, which means that the operating frequency of the dipole antenna is reconfigurable. When all the channels in the plasma radiator are activated, the operating frequency is tuned from 6.3 GHz to 4.9 GHz. The measured tunable bandwidth of our fabricated dipole antenna is approximately 31%, which is a practical value in comparison to conventional frequency reconfigurable antennas whose tunable bandwidth is in a range from 20% to 50%. To further support the validity of our results, we provide the well-matched simulation results from an antenna simulation. These results demonstrate that silicon with its commercial technology, which has not attracted attention in comparison to a metal antennas, is a promising tunable material for a frequency reconfigurable antenna. This plasma-based reconfigurable antenna has great potential for use in the dynamic communication environment.

6.
Sci Rep ; 7(1): 17232, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222422

RESUMEN

This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 104 and 105 S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...