Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12113, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802572

RESUMEN

SH-SY5Y, a neuroblastoma cell line, can be converted into mature neuronal phenotypes, characterized by the expression of mature neuronal and neurotransmitter markers. However, the mature phenotypes described across multiple studies appear inconsistent. As this cell line expresses common neuronal markers after a simple induction, there is a high chance of misinterpreting its maturity. Therefore, sole reliance on common neuronal markers is presumably inadequate. The Alzheimer's disease (AD) central gene, amyloid precursor protein (APP), has shown contrasting transcript variant dynamics in various cell types. We differentiated SH-SY5Y cells into mature neuron-like cells using a concise protocol and observed the upregulation of total APP throughout differentiation. However, APP transcript variant-1 was upregulated only during the early to middle stages of differentiation and declined in later stages. We identified the maturity state where this post-transcriptional shift occurs, terming it "true maturity." At this stage, we observed a predominant expression of mature neuronal and cholinergic markers, along with a distinct APP variant pattern. Our findings emphasize the necessity of using a differentiation state-sensitive marker system to precisely characterize SH-SY5Y differentiation. Moreover, this study offers an APP-guided, alternative neuronal marker system to enhance the accuracy of the conventional markers.


Asunto(s)
Precursor de Proteína beta-Amiloide , Diferenciación Celular , Neuronas , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuronas/metabolismo , Neuronas/citología , Línea Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Biomarcadores/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Empalme Alternativo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
3.
Sci Rep ; 12(1): 12905, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902672

RESUMEN

Canine hip dysplasia (HD) is a multifactorial disease caused by interactions between genetic and environmental factors. HD, which mainly occurs in medium- to large-sized dogs, is a disease that causes severe pain and requires surgical intervention. However, the procedure is not straight-forward, and the only way to ameliorate the situation is to exclude individual dogs with HD from breeding programs. Recently, prime editing (PE), a novel genome editing tool based on the CRISPR-Cas9 system, has been developed and validated in plants and mice. In this study, we successfully corrected a mutation related to HD in Labrador retriever dogs for the first time. We collected cells from a dog diagnosed with HD, corrected the mutation using PE, and generated mutation-corrected dogs by somatic cell nuclear transfer. The results indicate that PE technology can potentially be used as a platform to correct genetic defects in dogs.


Asunto(s)
Displasia Pélvica Canina , Animales , Sistemas CRISPR-Cas , Perros , Edición Génica , Displasia Pélvica Canina/diagnóstico , Displasia Pélvica Canina/genética , Displasia Pélvica Canina/patología , Ratones , Mutación
4.
BMC Biotechnol ; 22(1): 19, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831828

RESUMEN

BACKGROUND: Canine cloning technology based on somatic cell nuclear transfer (SCNT) combined with genome-editing tools such as CRISPR-Cas9 can be used to correct pathogenic mutations in purebred dogs or to generate animal models of disease. RESULTS: We constructed a CRISPR-Cas9 vector targeting canine DJ-1. Genome-edited canine fibroblasts were established using vector transfection and antibiotic selection. We performed canine SCNT using genome-edited fibroblasts and successfully generated two genome-edited dogs. Both genome-edited dogs had insertion-deletion mutations at the target locus, and DJ-1 expression was either downregulated or completely repressed. CONCLUSION: SCNT successfully produced genome-edited dogs by using the CRISPR-Cas9 system for the first time.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Transferencia Nuclear , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Clonación de Organismos , Perros , Edición Génica
5.
Transgenic Res ; 26(1): 153-163, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27554374

RESUMEN

Recent progress in genetic manipulation of pigs designated for xenotransplantation ha6s shown considerable promise on xenograft survival in primates. However, genetic modification of multiple genes in donor pigs by knock-out and knock-in technologies, aiming to enhance immunological tolerance against transplanted organs in the recipients, has not been evaluated for health issues of donor pigs. We produced transgenic Massachusetts General Hospital piglets by knocking-out the α-1,3-galactosyltransferase (GT) gene and by simultaneously knocking-in an expression cassette containing five different human genes including, DAF, CD39, TFPI, C1 inhibitor (C1-INH), and TNFAIP3 (A20) [GT-(DAF/CD39/TFPI/C1-INH/TNFAIP3)/+] that are connected by 2A peptide cleavage sequences to release individual proteins from a single translational product. All five individual protein products were successfully produced as determined by western blotting of umbilical cords from the newborn transgenic pigs. Although gross observation and histological examination revealed no significant pathological abnormality in transgenic piglets, hematological examination found that the transgenic piglets had abnormally low numbers of platelets and WBCs, including neutrophils, eosinophils, basophils, and lymphocytes. However, transgenic piglets had similar numbers of RBC and values of parameters related to RBC compared to the control littermate piglets. These data suggest that transgenic expression of those human genes in pigs impaired hematopoiesis except for erythropoiesis. In conclusion, our data suggest that transgenic expression of up to five different genes can be efficiently achieved and provide the basis for determining optimal dosages of transgene expression and combinations of the transgenes to warrant production of transgenic donor pigs without health issues.


Asunto(s)
Animales Modificados Genéticamente/genética , Eritropoyesis/genética , Galactosiltransferasas/genética , Transgenes/genética , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Antígenos CD/genética , Apirasa/genética , Proteína Inhibidora del Complemento C1/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Hematopoyesis/genética , Humanos , Leucocitos/metabolismo , Lipoproteínas/genética , Porcinos , Trasplante Heterólogo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética
6.
Bone ; 61: 10-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24389415

RESUMEN

Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. Several recent studies have suggested that SMILE is a novel co-repressor that is involved in nuclear receptor signaling; however, the role of SMILE in osteoblast differentiation has not yet been elucidated. This study demonstrates that SMILE inhibits osteoblast differentiation by regulating the activity of Runt-related transcription factor-2 (RUNX2). Tunicamycin, an inducer of endoplasmic reticulum stress, stimulated SMILE expression. Bone morphogenetic protein-2-induced expression of alkaline phosphatase and osteocalcin, both of which are osteogenic genes, was suppressed by SMILE. The molecular mechanism by which SMILE affects osteocalcin expression was also determined. An immunoprecipitation assay revealed a physical interaction between SMILE and RUNX2 that significantly impaired the RUNX2-dependent activation of the osteocalcin gene. A ChIP assay revealed that SMILE repressed the ability of RUNX2 to bind to the osteocalcin gene promoter. Taken together, these findings demonstrate that SMILE negatively regulates osteocalcin via a direct interaction with RUNX2.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica/fisiología , Osteoblastos/citología , Osteocalcina/biosíntesis , Animales , Western Blotting , Proteína Morfogenética Ósea 2/metabolismo , Inmunoprecipitación de Cromatina , Humanos , Ratones , Osteoblastos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Biochem Biophys Res Commun ; 443(1): 333-8, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24315873

RESUMEN

Endoplasmic reticulum (ER) stress suppresses osteoblast differentiation. Activating transcription factor (ATF) 3, a member of the ATF/cAMP response element-binding protein family of transcription factors, is induced by various stimuli including cytokines, hormones, DNA damage, and ER stress. However, the role of ATF3 in osteoblast differentiation has not been elucidated. Treatment with tunicamycin (TM), an ER stress inducer, increased ATF3 expression in the preosteoblast cell line, MC3T3-E1. Overexpression of ATF3 inhibited bone morphogenetic protein 2-stimulated expression and activation of alkaline phosphatase (ALP), an osteogenic marker. In addition, suppression of ALP expression by TM treatment was rescued by silencing of ATF3 using shRNA. Taken together, these data indicate that ATF3 is a novel negative regulator of osteoblast differentiation by specifically suppressing ALP gene expression in preosteoblasts.


Asunto(s)
Factor de Transcripción Activador 3/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular/genética , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Osteoblastos/citología , Osteogénesis/genética , Factor de Transcripción Activador 3/genética , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Línea Celular , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA