Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 361: 142567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851512

RESUMEN

To determine contamination sources and pathways, the use of multiple isotopes, including metal isotopes, can increase the reliability of environmental forensic techniques. This study differentiated contamination sources in groundwater of a mine area and elucidated geochemical processes using Cu, Zn, S-O, and O-H isotopes. Sulfate reduction and sulfide precipitation were elucidated using concentrations of dissolved sulfides, δ34SSO4, δ18OSO4, and δ66Zn. The overlying contaminated soil was possibly responsible for the contamination of groundwater at <5 mbgl, which was suggested by low δ65Cu values (0.419-1.120‰) reflecting those of soil (0.279-1.115‰). The existence of dissolved Cu as Cu(I) may prevent the increase in δ65Cu during leaching of contaminated soil in the sulfate-reducing environment. In contrast, the groundwater at >5 mbgl seemed to be highly affected by the contamination plume from the adit water, which was suggested by high SO42- concentrations (407-447 mg L-1) and δ65Cu (0.252-2.275‰) and δ66Zn (-0.105‰-0.362‰) values at a multilevel sampler approaching those of the adit seepages. Additionally, the O-H isotopic ratios were distinguished between <5 mbgl and >5 mbgl. Using δ65Cu and δ66Zn to support the determination of groundwater contamination sources may be encouraged, particularly where the isotopic signatures are distinct for each source.


Asunto(s)
Cobre , Monitoreo del Ambiente , Agua Subterránea , Minería , Contaminantes Químicos del Agua , Zinc , Agua Subterránea/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Cobre/análisis , Zinc/análisis , Suelo/química , Isótopos/análisis , Isótopos de Zinc/análisis , Isótopos de Oxígeno/análisis , Contaminantes del Suelo/análisis
2.
Environ Sci Pollut Res Int ; 31(3): 4220-4237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38102423

RESUMEN

For the soil in an area which has been repeatedly chosen as one of the 10 most polluted places in the world, stabilization of Pb and Zn was assessed in batch, incubation, and column experiments. Single and combined amendment of scrap-recycling slag (Slag-R), charcoal, coal ash, hydrated lime, and basic oxygen furnace (BOF) slag were applied for the stabilization. Notably, the combined amendment of Slag-R and hydrated lime exhibited superior stabilization efficiencies than the individual use of all stabilizing agents and combined use of charcoal and hydrated lime. The combined amendment of Slag-R and hydrated lime decreased Pb levels by 92-99% and Zn levels by 63-88% in the incubation experiments and by 75% and 89-93%, respectively, in the column experiments. In particular, the combined amendment showed a synergistic effect for Pb stabilization because a higher pH enhanced sorption onto the slag and because sorption onto Fe (hydr)oxides of the sorbent possibly helped to remove Pb. Zinc had a relatively lower sorption tendency, so it was mainly controlled by the pH increase from hydrated lime. Although the addition of hydrated lime was very effective in stabilizing high concentrations of Pb and Zn, the dosage should be controlled carefully because excessively high pH redissolves Pb and Zn as anions.


Asunto(s)
Compuestos de Calcio , Plomo , Contaminantes del Suelo , Carbón Orgánico , Óxidos , Zinc , Suelo , Contaminantes del Suelo/análisis
3.
Environ Geochem Health ; 46(1): 15, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147160

RESUMEN

Soil contamination by potentially toxic elements (PTEs), such as metal(loid)s, in mining areas was characterized on a nationwide scale in Mongolia to understand the contamination status throughout the country, according to mine types. Positive matrix factorization (PMF) analysis exhibited better classification and explanation of soil contamination according to ore types compared to conventional statistical analysis methods such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The results of PMF analysis for metal(loid) contents in 1425 topsoil samples collected from 272 mines illuminated four Factors, which primarily contributed to As (Factor 1), Pb, Zn, and Cd (Factor 2), Ni (Factor 3), and Cu and Cd (Factor 4) contaminations, respectively. In hard-rock gold mines, As was enriched and the contribution of Factor 1 was high (31.2%) due to the affinity between As and Au. In placer gold mines, the contribution of Factor 3 (41.8%) was high due to the affinity between Ni and weathering-resistant heavy minerals. For base metal, fluorite, and coal mines, contributions of Factors 2 (32.1-50.9%) and 4 (17.7-33.6%) were high owing to sulfides containing Pb-Zn-d and Cu. These impacts of mine types were altered by local geology (e.g., skarn). Meanwhile, Hg amalgamation contributed to Hg contamination in a few hard-rock gold mines. These results suggest that soil contaminants in mining areas are mainly affected by the type of deposits with geochemical affinities, region-specific ore characteristics, and artificial processing. Understanding these effects will help establish national strategies for countermeasures, such as soil rehabilitation in mining areas.


Asunto(s)
Cadmio , Mercurio , Contaminantes del Suelo , Oro , Plomo , Mongolia , Suelo , Minería
4.
J Hazard Mater ; 458: 131901, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356179

RESUMEN

Fractionation behaviors of Cu and Zn isotopes have been increasingly studied at the field scale, but those in various redox conditions of groundwater contaminated with petroleum and treated by oxidation have not been assessed. In this study, δ65Cu and δ66Zn as well as δ34SSO4 and Δδ18OSO4-H2O were assessed in wells undergoing contamination by total petroleum hydrocarbons (TPH) and oxidation using H2O2 in 2021 and 2022. High δ34SSO4 and relevant parameters (e.g., dissolved sulfide and HCO3-) indicated the occurrence of sulfate reduction. The plot of δ65Cu versus δ34SSO4 effectively indicated precipitation of Cu sulfides and their reoxidation at oxidation wells. Although the plot of δ66Zn versus δ34SSO4 could also indicate reoxidation of Zn sulfides, the Zn isotopic fingerprint of sulfide precipitation may have been masked by fractionation by sorption. The advantage of using δ65Cu in the redox reactions resulted from the wider range of δ65Cu owing to the redox behavior of Cu. The plot combining isotopic fractionations of Cu and S can assist in assessing sulfide precipitation and oxidative treatment in TPH-contaminated groundwater.

5.
J Hazard Mater ; 447: 130827, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36696775

RESUMEN

The use of multiple isotopic ratios and statistical methods can substantially increase the reliability and precision of determining contamination sources and pathways. In this study, contamination sources were differentiated in three subareas in one mine area and geochemical processes were investigated using Cu, Pb, Zn, and S isotopes and positive matrix factorization (PMF). Soil samples downstream of the adit seepages exhibited distinctly higher δ65Cu values than those from other areas. δ65Cu in adit seepages increased substantially from ore sulfides owing to large isotopic fractionation during oxidative dissolution. Although δ65Cu decreased during sulfide precipitation in seepage-contaminated soil, the discrimination of δ65Cu was still valid. Therefore, δ65Cu is particularly useful for differentiating between contamination by sulfides (tailings) and water (adit seepages). Moreover, sulfide precipitation following sulfate reduction was verified by the decreased δ66Zn and δ34S in the soil. In addition, the plot of 208Pb/206Pb versus Pb-1 distinguished contamination sources. Furthermore, PMF analysis confirmed the determination of sources and differentiated between contamination by As- and Cu-enriched tailings. The effect of Cu-enriched tailings further downstream suggested that the lower specific gravity of chalcopyrite compared to that of arsenopyrite affected the distribution of soil contamination.

6.
J Hazard Mater ; 443(Pt B): 130294, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335902

RESUMEN

Tailings were discharged to the Boroo River from gold mining by amalgamation, resulting in soil contamination near the river. To identify the sources and distribution mechanisms of each metal(loid) in the soil, a total of 184 soil samples were collected near the river and analyzed for As, Cd, Cu, Pb, Zn, and Hg contents. According to the positive matrix factorization result, three factors affected the contamination levels: the application of Hg for gold mining (Factor 1), light minerals containing Cu and Zn (Factor 2), and heavy minerals containing As and Cd (Factor 3). Soil samples were classified into four groups by hierarchical clustering. Groups A and B seemed to be affected by light and heavy minerals discharged in early and later stages of ore processing, respectively. The spatial distribution of the groups suggested differentiation in travel distances by specific gravity. Groups C and D showed high Hg contents implying the effect of Hg mismanagement and spill accidents. The study results show that the distribution of soil contaminants near rivers in mining areas is controlled by the specific gravity of minerals discharged to the environment (e.g., river), ore processing stages, and insufficient recovery and/or spills of Hg, which will help establish restoration measures.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Oro , Monitoreo del Ambiente/métodos , Cadmio , Mongolia , Mercurio/análisis , China , Medición de Riesgo
8.
Chemosphere ; 287(Pt 3): 132367, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34582928

RESUMEN

In mine drainage, Fe and Mn are the two most abundant elements exceeding the discharge criteria. Although Mn removal generally requires a pH exceeding 9.5-10.0, its coprecipitation and sorption by Fe and/or Al can significantly reduce the required pH. In this study, Mn removal efficiencies, mechanisms, and required pH were investigated by experiments involving varying concentrations of Mn, Fe, and Al at different pH, and X-ray photoelectron spectroscopy (XPS) analyses. At pH > 7.9, precipitation as Mn (hydr)oxides was the principal Mn removal process, as indicated by the Mn removal plots, geochemical modeling, and XPS results. The precipitation was highly promoted by the heterogeneous oxidation of Fe and Al hydroxides. Coprecipitation-sorption experiments showed 65-80% lower Mn concentrations than those of sorption experiments at similar dosages and pH near 7.5. Fe(III) exhibited higher coprecipitation efficiency than Fe(II), possibly due to the prior oxidation of Fe(II). Fe(III) also displayed a coprecipitation-sorption efficiency five times more than Al. To decrease the Mn concentrations from 17-25 mg L-1 to <2 mg L-1 by coprecipitation-sorption, Fe(III)/Mn and Fe(II)/Mn ratios of ∼10 and ∼20, respectively, at pH 9.0 were required. Similarly, an Al/Mn ratio of ∼7 at pH 9.0 was required to reduce the Mn concentration to <5 mg L-1. Furthermore, the required Fe/Mn ratio decreased significantly when the initial Mn concentration decreased to 8-11 mg L-1. Utilizing the deduced relationships, required pH for Mn removal could be estimated and the design of Mn treatment facilities can be more efficient.


Asunto(s)
Compuestos Férricos , Óxidos , Compuestos Ferrosos , Oxidación-Reducción , Espectroscopía de Fotoelectrones
9.
Sci Total Environ ; 779: 146453, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34030246

RESUMEN

As application of multiple metal isotopes can effectively constrain geochemical behavior of contaminants and assess contamination sources and pathways, field-scale studies on the geochemically interlinked fractionation of Zn and Cd isotopes in groundwater are needed. In this study, we collected groundwater samples from multi-level samplers downstream of tailings dumps as well as surface water, ore mineral, precipitate, and tailings samples at the Sambo and Buddeun metallic ore mines in South Korea, and analyzed their Zn, Cd, Pb, and sulfur isotopic compositions. Furthermore, isotopic ratios of ore mineral samples from additional four mines in South Korea (Dangdu, Dongbo, Gomyeong, Samgwang) were compared. A dual isotopic approach using Zn and Cd isotopes was used to assess fractionation processes, and Pb isotopic signatures reflecting their sources were assessed. Increasing trends of δ66Zn and δ114Cd with decreasing Zn and Cd concentrations were observed in groundwater, which was saturated with respect to ZnS (amorphous and sphalerite) and CdS (greenockite). Moreover, for some groundwater samples, δ66Zn showed a positive relationship with δ34SSO4. These results suggest that Zn and Cd are precipitated as sulfide following sulfate reduction. In the plot of δ66Zn against δ114Cd, relatively high and/or increasing δ66Zn in groundwater suggested the effect of fractionation due to sulfide precipitation, while variable and high δ114Cd values suggested the fractionation by adsorption and/or sulfide precipitation, which were based on positive fractionation factors for δ66Zn and δ114Cd during sulfide precipitation and mostly negative and positive fractionation factors for δ66Zn and δ114Cd, respectively, during adsorption. This study shows that the combined use of Zn and Cd isotopes in groundwater can effectively differentiate between adsorption and sulfide precipitation following sulfate reduction in groundwater. Additionally, the 208Pb/206Pb ratios of most water samples reflected those of ore and tailings samples, which verified usefulness of Pb isotopes in water in investigating Pb contamination sources.

10.
Environ Geochem Health ; 43(10): 4061-4074, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33772675

RESUMEN

Paddy fields near metalliferous mining area are sometimes contaminated by tailings or mine water. In the contaminated paddy fields around the abandoned Seoseong mine, South Korea, groundwater, surface water, and soil samples were assessed to infer sources (tailings and/or mine water) of soil contamination. Major contaminants in the soil included As and Pb which were not detected in the adit water. Moreover, δ34SSO4 values of groundwater at contaminated downstream paddy fields were higher than those of ground and surface water in the mining area, which indicated water-derived contamination is not evident. The Zn/Cd ratios of soil were assessed to verify the source (tailings) of soil contamination. Plots of the Zn/Cd ratio against Zn and As contents showed that soil samples contaminated from tailings had Zn/Cd ratios (108-247) which were similar with the Zn/Cd range of the tailings. In contrast, the ratios of the soil samples were different from the Zn/Cd range of contaminated water samples. The Zn/Cd ratios were determined using 0.1 M HCl-extractable Cd, and the fraction of 0.1 M HCl-extractable Cd in aqua regia-digestible Cd increased with increasing aqua regia-digestible Cd content. These observations suggest that Zn/Cd ratios in contaminated soil are primarily controlled by 0.1 M HCl-extractable Cd, possibly due to the greater exchangeability of 0.1 M HCl-extractable Cd than that of total Cd. This suggests that Zn/Cd ratios determined using 0.1 M HCl-extractable Cd can be especially sensitive and useful for determining sources of soil contamination in mining areas such as tailings or contaminated water.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Zinc/análisis
11.
Environ Geochem Health ; 43(10): 4105-4122, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33774777

RESUMEN

In the area around the abandoned Seoseong mine, South Korea, coastal paddy fields undergo seawater intrusion and possible sulfate reduction. Here, channel water is used for irrigation, fertilizers are applied, and some paddy fields are contaminated by mining activities, which subsequently contaminate a groundwater well with arsenic. In this complex environment, the isotopic signatures of sulfate and water in water samples were assessed to reveal sources of sulfate, water and processes in the groundwater system. Sulfur and oxygen isotopes of sulfate indicated three major sources of sulfate-namely the mine including tailings, intruded seawater, and fertilizer-and an additional process of sulfate reduction. The sulfate sources and sulfate reduction could be distinguished more clearly after the variable of sulfate contribution from seawater was introduced. According to the analysis results of hydrogen and oxygen isotopes of water, areas affected by irrigation from a reservoir and its downstream channel were distinguished, possibly because the reservoir underwent evaporation effect. A schematic diagram was proposed to explain complex sources and processes in the studied area. Especially, a suggested plot of δ34SSO4 against the sulfate contribution from seawater [f(SO42-seawater)] could efficiently differentiate various contamination sources (e.g., mining activity and fertilizer) and processes (e.g., seawater intrusion and sulfate reduction) in coastal aquifer.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Agua de Mar , Sulfatos , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA