Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728314

RESUMEN

Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.


Asunto(s)
Difosfatos , Saccharomyces cerevisiae , Animales , Quinasas Ciclina-Dependientes , Mamíferos , Fosfatos , Saccharomyces cerevisiae/genética
2.
mBio ; 14(3): e0010223, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37074217

RESUMEN

Cells stabilize intracellular inorganic phosphate (Pi) to compromise between large biosynthetic needs and detrimental bioenergetic effects of Pi. Pi homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of Pi in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize Pi scarcity. Whereas Pi starvation affects numerous metabolic pathways, beginning Pi scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending Pi limitation. Actual Pi starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates Pi-dependent transcription factors. Cells lacking inorganic polyphosphate show Pi starvation features already under Pi-replete conditions, suggesting that vacuolar polyphosphate supplies Pi for metabolism even when Pi is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel Pi to preferred cellular processes. IMPORTANCE Cells must strike a delicate balance between the high demand of inorganic phosphate (Pi) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.


Asunto(s)
Difosfatos , Saccharomyces cerevisiae , Difosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polifosfatos/metabolismo , Inositol/metabolismo , Adenosina Trifosfato/metabolismo
3.
Plant Signal Behav ; 13(2): e1432955, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29381447

RESUMEN

To overcome high temperature stress, plants have developed transcriptional cascades which express a large amount of chaperone proteins called heat shock proteins (HSPs). In our recent publication, we reported that STABILIZED1, as an U5-snRNP-interacting protein, is involved in the splicing of heat shock factor (HSF) and HSP transcripts during high temperature stress. This indicates that not only transcriptional regulation, but also post-transcriptional regulation by STA1, is essential for the full activation of HSF-HSP cascades and for thermotolerance. Here, we observed that the splicing of HSP transcripts was induced independent of STA1 at room temperature after heat acclimation, indicating that STA1 acts as a high temperature-specific splicing factor for the splicing of HSP transcripts. Our findings suggest the molecular mechanism for how HSF and HSP transcripts are spliced well under high temperature stress that blocks the splicing of overall transcripts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Empalme del ARN/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Proteínas Nucleares/genética
4.
Sci Rep ; 7(1): 2767, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28584283

RESUMEN

For photoautotrophic plants, light-dependent photosynthesis plays an important role in organismal growth and development. Under light, Arabidopsis hypocotyl growth is promoted by the phytohormone ethylene. Despite well-characterized ethylene signaling pathways, the functions of light in the hormone-inducible growth response still remain elusive. Our cell-based functional and plant-system-based genetic analyses with biophysical and chemical tools showed that a chemical blockade of photosystem (PS) II activity affects ethylene-induced hypocotyl response under light. Interestingly, ethylene responsiveness modulates PSII activity in retrospect. The lack of ethylene responsiveness-inducible PSII inefficiency correlates with the induction of AKIN10 expression. Consistently, overexpression of AKIN10 in transgenic plants suppresses ethylene-inducible hypocotyl growth promotion under illumination as in other ethylene-insensitive mutants. Our findings provide information on how ethylene responsiveness-dependent photosynthetic activity controls evolutionarily conserved energy sensor AKIN10 that fine-tunes EIN3-mediated ethylene signaling responses in organ growth under light.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Alelos , Metabolismo Energético , Eliminación de Gen , Genotipo , Luz , Fenotipo , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/metabolismo , Desarrollo de la Planta
5.
Sci Rep ; 7(1): 3193, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600557

RESUMEN

Aging of living organisms is governed by intrinsic developmental programs, of which progression is often under the regulation of their cellular energy status. For example, calorie restriction is known to slow down aging of heterotrophic organisms from yeasts to mammals. In autotrophic plants cellular energy deprivation by perturbation of photosynthesis or sugar metabolism is also shown to induce senescence delay. However, the underlying molecular and biochemical mechanisms remain elusive. Our plant cell-based functional and biochemical assays have demonstrated that SNF1-RELATED KINASE1 (SnRK1) directly interacts, phosphorylates, and destabilizes the key transcription factor ETHYLENE INSENSITIVE3 (EIN3) in senescence-promoting hormone ethylene signaling. Combining chemical manipulation and genetic validation using extended loss-of-function mutants and gain-of-function transgenic lines, we further revealed that a SnRK1 elicitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea enables to slow down senescence-associated leaf degreening through the regulation of EIN3 in Arabidopsis. Our findings enlighten that an evolutionary conserved cellular energy sensor SnRK1 plays a role in fine-tuning of organ senescence progression to avoid sudden death during the last step of leaf growth and development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metabolismo Energético/genética , Hojas de la Planta/genética , Proteínas Serina-Treonina Quinasas/genética , Envejecimiento/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fosforilación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética
6.
Plant Physiol ; 173(4): 2370-2382, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28223317

RESUMEN

High-temperature stress often leads to differential RNA splicing, thus accumulating different types and/or amounts of mature mRNAs in eukaryotic cells. However, regulatory mechanisms underlying plant precursor mRNA (pre-mRNA) splicing in the environmental stress conditions remain elusive. Herein, we describe that a U5-snRNP-interacting protein homolog STABILIZED1 (STA1) has pre-mRNA splicing activity for heat-inducible transcripts including HEAT STRESS TRANSCRIPTION FACTORs and various HEAT SHOCK PROTEINs for the establishment of heat stress tolerance in Arabidopsis (Arabidopsis thaliana). Our cell-based splicing reporter assay demonstrated STA1 acts on pre-mRNA splicing for specific subsets of stress-related genes. Cellular reconstitution of heat-inducible transcription cascades supported the view that STA1-dependent pre-mRNA splicing plays a role in DREB2A-dependent HSFA3 expression for heat-responsive gene expression. Further genetic analysis with a loss-of-function mutant sta1-1, STA1-expressing transgenic plants in Col background, and STA1-expressing transgenic plants in the sta1-1 background verified that STA1 is essential in expression of necessary genes including HSFA3 for two-step heat stress tolerance in plants. However, constitutive overexpression of the cDNA version of HSFA3 in the sta1-1 background is unable to execute plant heat stress tolerance in sta1-1 Consistently our global target analysis of STA1 showed that its splicing activity modulates a rather broad range of gene expression in response to heat treatment. The findings of this study reveal that heat-inducible STA1 activity for pre-mRNA splicing serves as a molecular regulatory mechanism underlying the plant stress tolerance to high-temperature stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/genética , Precursores del ARN/genética , Empalme del ARN , Termotolerancia/genética , Arabidopsis/genética , Calor , Modelos Genéticos , Mutación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
7.
Biochem Biophys Res Commun ; 457(2): 213-20, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25545061

RESUMEN

AN1/A20-like Zinc finger family proteins are evolutionarily conserved regulatory components in eukaryotic signaling circuits. In Arabidopsis thaliana, the AN1/A20 Zinc finger family is encoded as 14 members in the genome and collectively referred to as stress-associated proteins (SAPs). Here we described AtSAP5 localized to the nucleus, and played a role in heat-responsive gene regulation together with MBF1c. Seedling survival assay of sap5 and mbf1c demonstrated consistent effects of AtSAP5 and MBF1C in response to two-step heat treatment, supporting their function in heat stress tolerance. Our findings yield an insight in A20/AN1-like Zinc finger protein AtSAP5 functions in plant adaptability under high temperature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Secuencia Conservada , Evolución Molecular , Calor , Estrés Fisiológico , Dedos de Zinc , Adaptación Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Unión Proteica , Transporte de Proteínas , Estrés Fisiológico/genética , Transactivadores/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
8.
Plant Cell Environ ; 37(10): 2303-12, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24890857

RESUMEN

Terrestrial plants are exposed to complex stresses of high salt-induced abscisic acid (ABA) and submergence-induced hypoxia when seawater floods fields. Many studies have investigated plant responses to individual stress conditions, but not so much for coupled or sequentially imposed stresses. We examined molecular regulatory mechanisms of gene expression underlying the cellular responses involved in crosstalk between salt and hypoxia stresses. Salt/ABA- and AtMYC2-dependent induction of a synthetic ABA-responsive element and the native RD22 promoters were utilized in our cell-based functional assays. Such promoter-based reporter induction was largely inhibited by hypoxia and hypoxia-inducible AKIN10 activity. Biochemical analyses showed that AKIN10 negatively modulates AtMYC2 protein accumulation via proteasome activity upon AKIN10 kinase activity-dependent protein modification. Further genetic analysis using transgenic plants expressing AKIN10 provided evidence that AKIN10 activity undermined AtMYC2-dependent salt tolerance. Our findings unravel a novel molecular interaction between the key signalling constituents leading crosstalk between salt and hypoxia stresses in Arabidopsis thaliana under the detrimental condition of submergence in saltwater.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Ácido Abscísico/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión , Tolerancia a la Sal , Agua de Mar/efectos adversos , Cloruro de Sodio/farmacología
9.
Mol Cells ; 33(1): 99-103, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22228186

RESUMEN

The higher plants of today array a large number of small chloroplasts in their photosynthetic cells. This array of small chloroplasts results from organelle division via prokaryotic binary fission in a eukaryotic plant cell environment. Functional abnormalities of the tightly coordinated biochemical event of chloroplast division lead to abnormal chloroplast development in plants. Here, we described an abnormal chloroplast phenotype in an ethylene insensitive ethylene response1-1 (etr1-1) of Arabidopsis thaliana. Extensive transgenic and genetic analyses revealed that this organelle abnormality was not linked to etr1-1 or ethylene signaling, but linked to a second mutation in ACCUMULATION AND REPLICATION3 (ARC3), which was further verified by genetic complementation analysis. Despite the normal expression of other plastid division-related genes, the loss of ARC3 caused the enlargement of chloroplasts as well as the diminution of a photosynthetic protein Rubisco in etr1-1. Our study has suggested that the increased size of the abnormal chloroplasts may not be able to fully compensate for the loss of a greater array of small chloroplasts in higher plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/ultraestructura , Cloroplastos/genética , Proteínas de Unión al ADN/genética , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Secuencia de Bases , Cloroplastos/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Fotosíntesis , Plantas Modificadas Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA