Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(4): 812-827, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38480001

RESUMEN

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Peróxido de Hidrógeno , Estrés Oxidativo , Floroglucinol , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , beta Catenina , Humanos , Floroglucinol/farmacología , Floroglucinol/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosforilación/efectos de los fármacos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/metabolismo , Folículo Piloso/citología , Dermis/citología , Dermis/metabolismo , Dermis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Alopecia/tratamiento farmacológico , Alopecia/metabolismo
2.
Molecules ; 29(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38202856

RESUMEN

Paclitaxel is still used as a standard first-line treatment for ovarian cancer. Although paclitaxel is effective for many types of cancer, the emergence of chemoresistant cells represents a major challenge in chemotherapy. Our study aimed to analyze the cellular mechanism of dacomitinib, a pan-epidermal growth factor receptor (EGFR) inhibitor, which resensitized paclitaxel and induced cell cytotoxicity in paclitaxel-resistant ovarian cancer SKOV3-TR cells. We investigated the significant reduction in cell viability cotreated with dacomitinib and paclitaxel by WST-1 assay and flow cytometry analysis. Dacomitinib inhibited EGFR family proteins, including EGFR and HER2, as well as its downstream signaling proteins, including AKT, STAT3, ERK, and p38. In addition, dacomitinib inhibited the phosphorylation of Bad, and combination treatment with paclitaxel effectively suppressed the expression of Mcl-1. A 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay revealed a substantial elevation in cellular reactive oxygen species (ROS) levels in SKOV3-TR cells cotreated with dacomitinib and paclitaxel, which subsequently mediated cell cytotoxicity. Additionally, we confirmed that dacomitinib inhibits chemoresistance in paclitaxel-resistant ovarian cancer HeyA8-MDR cells. Collectively, our research indicated that dacomitinib effectively resensitized paclitaxel in SKOV3-TR cells by inhibiting EGFR signaling and elevating intracellular ROS levels.


Asunto(s)
Fluoresceínas , Neoplasias Ováricas , Paclitaxel , Quinazolinonas , Femenino , Humanos , Paclitaxel/farmacología , Especies Reactivas de Oxígeno , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis , Receptores ErbB
3.
Biomedicines ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38137377

RESUMEN

Ovarian cancer is the leading cause of death among gynecologic cancers. Paclitaxel is used as a standard first-line therapeutic agent for ovarian cancer. However, chemotherapeutic resistance and high recurrence rates are major obstacles to treating ovarian cancer. We have found that tephrosin, a natural rotenoid isoflavonoid, can resensitize paclitaxel-resistant ovarian cancer cells to paclitaxel. Cell viability, immunoblotting, and a flow cytometric analysis showed that a combination treatment made up of paclitaxel and tephrosin induced apoptotic death. Tephrosin inhibited the phosphorylation of AKT, STAT3, ERK, and p38 MAPK, all of which simultaneously play important roles in survival signaling pathways. Notably, tephrosin downregulated the phosphorylation of FGFR1 and its specific adapter protein FRS2, but it had no effect on the phosphorylation of the EGFR. Immunoblotting and a fluo-3 acetoxymethyl assay showed that tephrosin did not affect the expression or function of P-glycoprotein. Additionally, treatment with N-acetylcysteine did not restore cell cytotoxicity caused by a treatment combination made up of paclitaxel and tephrosin, showing that tephrosin did not affect the reactive oxygen species scavenging pathway. Interestingly, tephrosin reduced the expression of the anti-apoptotic factor XIAP. This study demonstrates that tephrosin is a potent antitumor agent that can be used in the treatment of paclitaxel-resistant ovarian cancer via the inhibition of the FGFR1 signaling pathway.

4.
Chemosphere ; 342: 140162, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709062

RESUMEN

Incorporation of wastewater from industrial sectors into the design of microalgal biorefineries has significant potential for advancing the practical application of this emerging industry. This study tested various food industrial wastewaters to assess their suitability for microalgal cultivation. Among these wastewaters, defective soy sauce (DSS) and soy sauce wastewater (SWW) were chosen but DSS exhibited the highest nutrient content with 13,500 ppm total nitrogen and 3051 ppm total phosphorus. After diluting DSS by a factor of 50, small-scale cultivation of microalgae was conducted to optimize culture conditions. SWW exhibited optimal growth at 25-30 °C and 300-500 µE m-2 s-1, while DSS showed optimal growth at 30-35 °C. Based on a 100-mL lab-scale and 3-L outdoor cultivation with an extended cultivation period, DSS outperformed SWW, exhibiting higher final biomass productivity. Additionally, nutrient-concentrated nature of DSS is advantageous for transportation at an industrial scale, leading us to select it as the most promising feedstock for microalgal cultivation. With further optimization, DSS has the potential to serve as an effective microalgal cultivation feedstock for large-scale biomass production.


Asunto(s)
Chlorella , Microalgas , Alimentos de Soja , Aguas Residuales , Chlorella/metabolismo , Fósforo/metabolismo , Alimentos , Microalgas/metabolismo , Biomasa , Nitrógeno/análisis
5.
Molecules ; 28(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110769

RESUMEN

Serine protease is linked to a wide range of diseases, prompting the development of robust, selective, and sensitive protease assays and sensing methods. However, the clinical needs for serine protease activity imaging have not yet been met, and the efficient in vivo detection and imaging of serine protease remain challenging. Here, we report the development of the gadolinium-cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-click-Sulfonyl Fluoride (Gd-DOTA-click-SF) MRI contrast agent targeting serine protease. The HR-FAB mass spectrum confirmed the successful formation of our designed chelate. The molar longitudinal relaxivity (r1) of the Gd-DOTA-click-SF probe (r1 = 6.82 mM-1 s-1) was significantly higher than that of Dotarem (r1 = 4.63 mM-1 s-1), in the range of 0.01-0.64 mM at 9.4 T. The in vitro cellular study and the transmetallation kinetics study showed that the safety and stability of this probe are comparable to those of conventional Dotarem. Ex vivo abdominal aortic aneurysm (AAA) MRI revealed that this probe has a contrast-agent-to-noise ratio (CNR) that is approximately 51 ± 23 times greater than that of Dotarem. This study of superior visualization of AAA suggests that it has the potential to detect elastase in vivo and supports the feasibility of probing serine protease activity in T1-weighted MRI.


Asunto(s)
Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética/métodos , Serina Proteasas
6.
Dev Reprod ; 27(4): 213-220, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38292238

RESUMEN

Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 µM NP (CTL vs 100 nM NP, p<0.05; vs 1 µM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 µM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.

7.
ACS Appl Mater Interfaces ; 14(34): 39098-39108, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35972221

RESUMEN

Fluorination of a conjugated polymer backbone is an effective strategy to control the microstructure and electronic structure of a conjugated polymer. Although fluorination has been widely reported to increase charge carrier mobility, its effect on the operational stability of electronic devices has not been extensively investigated. Here, the effect of fluorination of a conjugated polymer backbone on charge trapping and the operational stability of organic field-effect transistors is investigated. The results show that the device based on a fluorinated conjugated polymer exhibits relatively poor operational stability despite its greater charge carrier mobility compared with that in the device based on its nonfluorinated polymer counterpart. Experimental results reveal that the low stability originates from the greater degree of shallow trapping of charge carriers within the fluorinated polymer thin film and that the shallow trapping is closely related to the presence of minority charge carriers. A mechanism of charge trapping is proposed.

8.
Dev Reprod ; 26(4): 175-182, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36817359

RESUMEN

Previous studies, including our own, indicate that distinct morphological changes in rodent adrenal cortex could be induced by exposure of endocrine disrupting chemicals (EDC). In the present study, we conducted histological analyses of adrenocortical substructure using a nonylphenol-treated F1 rat model. The adrenal weight of NP-5000 group was significantly declined in female rats (p<0.001), while the adrenal weights of NP-treated groups were not significantly changed in male rats. The thickness of zona glomerulosa layers of female rats in NP-5000 group was significantly declined (p<0.001) but zona fasciculata layers were not changed. The zona reticularis layers of NP-treated group were significantly thinner than those of control group (NP-50, p<0.05; NP-5000, p<0.01). In male adrenal glands, there was no significant change of zona glomerulosa layers in NP-treated groups while the thickness of zona fasciculata in NP-5000 group was significantly decreased (p<0.01). Like female rats, the thickness of zona reticularis in NP-treated groups was significantly decreased (NP-50, p<0.001; NP-5000, p<0.05). Present study demonstrated that the adrenal histology could be altered by low-dose NP exposure in F1 rats, and the effect might be sexually dimorphic. Further study will be helpful for understanding possible adrenal pathophysiology induced by EDC exposure, and EDC-related sexually dimorphic phenomena in rodent adrenals.

9.
ACS Appl Mater Interfaces ; 12(46): 51699-51708, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33140971

RESUMEN

Two polymer donors, PFBDT-8ttTPD and PClBDT-8ttTPD, consisting of halogenated thiophene-substituted benzo[1,2-b:4,5-b']dithiophene and alkyl-substituted thieno[3,2-b]thiophene linked thieno[3,4-c]pyrrole-4,6(5H)-dione, were designed and synthesized for the evaluation of photovoltaic performances. The fabricated IT-4F-based organic solar cells (OSCs) exhibited maximum power conversion efficiency (PCE) values of 12.81 and 11.12% for PFBDT-8ttTPD and PClBDT-8ttTPD, respectively. Furthermore, PFBDT-8ttTPD:Y6 showed significantly improved PCE (15.05%) due to the extended light harvesting in the broad solar spectrum, whereas the PClBDT-8ttTPD:Y6 displayed relatively low PCE (10.02%). A ternary system incorporating PC71BM as the third component into bulk-heterojuction composites (PFBDT-8ttPTD:non-fullerene) was investigated with the aim of utilizing the advantages of PC71BM. As a result, PFBDT-8ttTPD:IT-4F:PC71BM exhibited an improved PCE (13.67%) compared to that of the corresponding binary OSC. In particular, ternary OSC of PFBDT-8ttTPD:Y6:PC71BM showed outstanding photovoltaic performance (PCE = 16.43%) as well as photostability, retaining approximately 80% of the initial PCE after 500 h under continuous illumination. The introduction of a small amount of PC71BM resulted in favorable and dense molecular packing with improved crystallinity as well as enhanced charge carrier mobility for efficient OSC.

10.
ACS Appl Mater Interfaces ; 12(45): 50638-50647, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33108151

RESUMEN

In this work, a series of A-D-A'-D-A-type electron acceptors based on alkylated indacenodithiophene (C8IDT), dicyanated thiophene-flanked 2,1,3-benzothiadiazole (CNDTBT), and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) or 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (FINCN) are synthesized in order to investigate the effect of substituents on their photovoltaic properties. The corresponding CNDTBT-C8IDT-INCN and CNDTBT-C8IDT-FINCN acceptors vary in their optical, electrochemical, morphological, and charge transport properties. The fluorinated-INCN-based acceptor (CNDTBT-C8IDT-FINCN) exhibits lower energy levels, improved absorptivity, narrower π-π spacing, and prominent fibrillar structures when it is blended with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo [1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T). CNDTBT-C8IDT-FINCN exhibits a high power conversion efficiency (PCE) of 12.33% due to its high and well-balanced charge carrier mobility and distinct face-on orientation. Furthermore, large-area organic solar cells (OSCs) (active area: 55.45 cm2) with CNDTBT-C8IDT-FINCN exhibit a high PCE of 9.21%. This result demonstrates that CNDTBT-C8IDT-FINCN is a suitable and promising electron acceptor for large-area OSCs.

11.
Sci Rep ; 10(1): 16698, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028886

RESUMEN

Microalgae accumulate abundant lipids and are a promising source for biodiesel. However, carbohydrates account for 40% of microalgal biomass, an important consideration when using them for the economically feasible production of biodiesel. In this study, different acid hydrolysis and post-treatment processing of Chlorella sp. ABC-001 was performed, and the effect of these different hydrolysates on bioethanol yield by Saccharomyces cerevisiae KL17 was evaluated. For hydrolysis using H2SO4, the neutralization using Ca(OH)2 led to a higher yield (0.43 g ethanol/g sugars) than NaOH (0.27 g ethanol/g sugars). Application of electrodialysis to the H2SO4 + NaOH hydrolysate increased the yield to 0.35 g ethanol/g sugars, and K+ supplementation further enhanced the yield to 0.41 g ethanol/g sugars. Hydrolysis using HNO3 led to the generation of reactive species. Neutralization using only NaOH yielded 0.02 g ethanol/g sugars, and electrodialysis provided only a slight enhancement (0.06 g ethanol/g sugars). However, lowering the levels of reactive species further increased the yield to 0.25 g ethanol/g sugars, and K+ supplementation increased the yield to 0.35 g ethanol/g sugars. Overall, hydrolysis using H2SO4 + Ca(OH)2 provided the highest ethanol yield, and the yield was almost same as from conventional medium. This research emphasizes the importance of post-treatment processing that is modified for the species or strains used for bioethanol fermentation.


Asunto(s)
Biocombustibles , Biotecnología , Etanol , Fermentación , Microalgas , Biomasa , Carbohidratos , Azúcares
12.
J Environ Manage ; 271: 111041, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778320

RESUMEN

Lipid production in microalgae under nitrogen (N) starved condition can be enhanced by excess phosphorus (P) supply in the second stage of two-stage cultivation strategy. However, implementing two-stage cultivation is difficult in large-scale cultivation system as it requires high energy of transferring large algal biomass from first stage to second stage. To address this problem, we have optimized a continuous two-stage (CTS) cultivation strategy using Chlorella sp. HS2, where nitrogen in the growth environment is depleted naturally via consumption. To enhance both biomass and lipid productivity this strategy explored supplementation of additional P from 50% to 2500% of the initial concentration at the start of N-limited second stage of growth. The results of the optimization study in photobioreactor (PBR) showed that supplementing 500% of initial P and 100% of initial other nutrients (O) (N0-P500-O100) on 5th day showed the maximum biomass productivity of 774.4 mg L-1 d-1. It was observed that Chlorella sp. HS2 grown in PBR yielded higher biomass (3.8 times), lipid (6.1 times) and carbohydrate (5.5 times) productivity in comparison to the open raceway ponds (ORP) study, under optimum nutrient and carbon supply condition. The maximum lipid (289.6 mg L-1 d-1) and carbohydrate (219.2 mg L-1 d-1) productivities were obtained in TPBR-3, which were 1.9 and 1.3 times higher than that of TPBR-2 (+ve control) and 9.6 and 3.7 times higher than that of TPBR-1 (-ve control), respectively. Fatty acid mainly composed of C16/C18 (84.5%-85.7%), which makes the microalgal oil suitable for biofuel production. This study concluded that feeding excess amount of P is an effective and scalable strategy to improve the biomass and lipid productivity of CTS cultivation.


Asunto(s)
Chlorella , Microalgas , Biocombustibles , Biomasa , Fósforo , Fotobiorreactores
13.
Materials (Basel) ; 13(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486327

RESUMEN

Existing deicing technologies involving chloride and heating wires have limitations such as reduced durability of roads and surrounding structures, and high labor requirements and maintenance costs. Hence, in this study, we performed indoor experiments, numerical analyses, and field tests to examine the efficiency of deicing using carbon nanotubes (CNTs) to overcome these limitations. For indoor experiments, a CNT was inserted into the center of a concrete sample and then heated to 60 °C while maintaining the ambient and internal temperatures of the sample at -10 °C using a refrigeration chamber. Numerical analysis considering thermal conductivity was performed based on the indoor experimental results. Using the calculation results, field tests were conducted, and the thermal conduction performance of the heating element was examined. Results showed that the surface temperature between the heating elements exceeded 0 °C. Moreover, we found that the effective heating distance of the heating elements should be 20-30 cm for effective thermal overlap through the indoor experiments. Additionally, the numerical analysis results indicated that the effective heating distance increased to 100 cm when the heating element temperature and experiment time were increased. Field test results showed that 62 cm-deep snow melted between the heating elements (100 cm), thus, verifying the possibility of deicing.

14.
J Microbiol Biotechnol ; 30(1): 136-145, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31693833

RESUMEN

Chlorella sp. HS2, which previously showed excellent performance in phototrophic cultivation and has tolerance for wide ranges of salinity, pH, and temperature, was cultivated heterotrophically. However, this conventional medium has been newly optimized based on a composition analysis using elemental analysis and ICP-OES. In addition, in order to maintain a favorable dissolved oxygen level, stepwise elevation of revolutions per minute was adopted. These optimizations led to 40 and 13% increases in the biomass and lipid productivity, respectively (7.0 and 2.25 g l-1d-1 each). To increase the lipid content even further, 12 h heat shock at 50°C was applied and this enhanced the biomass and lipid productivity up to 4 and 17% respectively (7.3 and 2.64 g l-1d-1, each) relative to the optimized conditions above, and the values were 17 and 14% higher than ordinary lipid-accumulating N-limitation (6.2 and 2.31 g l-1d-1). On this basis, heat shock was successfully adopted in novel Chlorella sp. HS2 cultivation as a lipid inducer for the first time. Considering its fast and cost-effective characteristics, heat shock will enhance the overall microalgal biofuel production process.


Asunto(s)
Biocombustibles , Biomasa , Chlorella/metabolismo , Calor , Lípidos/biosíntesis , Microbiología Industrial , Oxígeno/metabolismo
15.
Sci Rep ; 9(1): 19383, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852948

RESUMEN

The heterotrophic cultivation of microalgae has a number of notable advantages, which include allowing high culture density levels as well as enabling the production of biomass in consistent and predictable quantities. In this study, the full potential of Chlorella sp. HS2 is explored through optimization of the parameters for its heterotrophic cultivation. First, carbon and nitrogen sources were screened in PhotobioBox. Initial screening using the Plackett-Burman design (PBD) was then adopted and the concentrations of the major nutrients (glucose, sodium nitrate, and dipotassium phosphate) were optimized via response surface methodology (RSM) with a central composite design (CCD). Upon validation of the model via flask-scale cultivation, the optimized BG11 medium was found to result in a three-fold improvement in biomass amounts, from 5.85 to 18.13 g/L, in comparison to a non-optimized BG11 medium containing 72 g/L glucose. Scaling up the cultivation to a 5-L fermenter resulted in a greatly improved biomass concentration of 35.3 g/L owing to more efficient oxygenation of the culture. In addition, phosphorus feeding fermentation was employed in an effort to address early depletion of phosphate, and a maximum biomass concentration of 42.95 g/L was achieved, with biomass productivity of 5.37 g/L/D.


Asunto(s)
Chlorella/crecimiento & desarrollo , Procesos Heterotróficos/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Fosfatos/farmacología , Compuestos de Potasio/farmacología , Biomasa , Reactores Biológicos , Carbono/metabolismo , Técnicas de Cultivo de Célula , Chlorella/metabolismo , Medios de Cultivo/química , Fermentación/efectos de los fármacos , Microalgas/metabolismo , Nitrógeno/metabolismo , Fósforo/farmacología
16.
ACS Appl Mater Interfaces ; 11(50): 47121-47130, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31755688

RESUMEN

The realization of printed organic solar cells (OSCs) as a commercial technology is dependent on the development of high-performance photovoltaic materials suitable for large-scale device manufacture. In this study, the design, synthesis, and characterization of a series of A-D-A'-D-A-type molecular acceptors based on indacenodithienothiophene (IDTT) and thiophene-flanked 2,1,3-benzothiadiazole (DTBT) are reported. The synthesized molecular acceptors showed broader absorption ranges and narrower band gap energies than those of well-known 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno [2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC)-based molecular acceptors. Furthermore, the synthesized acceptors could tune the frontier molecular orbital energy levels, dipole moments, and their crystallinities by introducing fluorine (F) atoms and cyano (CN) groups on DTBT as a core A' unit. The cyano-substituted DTBT-based molecular acceptor (CNDTBT-IDTT-FINCN) showed a strong molar absorptivity and dipole moment, high hole/electron charge mobilities, and a favorable face-on orientation using films blended with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T). An inverted organic photovoltaic (OPV) device using CNDTBT-IDTT-FINCN exhibits a power conversion efficiency (PCE) of 9.13% when using PBDB-T as a donor material in small cells (0.12 cm2). Sub-module devices with an active area of 55.45 cm2 are fabricated using bar-coating and exhibit PCEs of up to 7.50%. This demonstration of a high-efficiency large-area device makes CNDTBT-IDTT-FINCN a suitable and promising candidate for printed OPV devices.

17.
Sci Rep ; 9(1): 6830, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048751

RESUMEN

The culture conditions and media composition for the heterotrophic culture of an axenic strain of Ettlia sp. YC001 were firstly optimized using the Plackett-Burman design (PBD) and response surface methodology (RSM). The strain successfully showed higher productivity in the basal media without any light illumination at 32.2 to 33.3 °C. The PBD results showed that the most effective components for biomass productivity of Ettlia sp. were fructose and yeast extract for sources of C and N, respectively. The RSM results showed an optimal level of 72.2 g/L for fructose and 21.5 g/L for yeast extract, resulting in 46.1 g/L biomass with a lipid content of 13.8% over a course of 9 days. Using a 5 L scaled-up fermentation system for 6 days, the production of biomass and lipids was 7.21 g/L/day and 1.18 g/L/day, respectively. Consequently, heterotrophic cultivation of Ettlia sp. YC001 provided much higher production of biomass and lipids than those of autotrophic cultivation. As further research, the use of substitute substrates instead of fructose and yeast extract should be developed to reduce production costs.


Asunto(s)
Lípidos/análisis , Microalgas/metabolismo , Biomasa , Carbono/metabolismo , Fermentación/fisiología , Nitrógeno/metabolismo , Temperatura
18.
J Nanosci Nanotechnol ; 19(10): 6158-6163, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026928

RESUMEN

In this study, two new thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPP)-based polymers, poly{2,5-bis(2-dodecylhexadecyl)-3,6-bis(thieno[3,2-b]thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2, 2'-bithiophene} (PTTDPP-BT) and {2,5-bis(2-dodecylhexadecyl)-3,6-bis(thieno[3,2-b]thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2,2'-selenophene} (PTTDPP-BSe), which contained bithiophene (BT) and biselenophene (BSe) units, respectively, were designed and synthesized. The introduction of BT and BSe units affected the optical, electrochemical, morphological, and charge transport properties of the polymers. Experimental results revealed that the frontier molecular orbital energy levels of PTTDPP-BT were slightly higher because of the relatively strong electron donating ability of the sulfur atom and the polymer also exhibited good solubility. The maximum mobility in the case of PTTDPP-BT at 250 °C was 0.068 cm² V-1 s-1 and that of PTTDPP-BSe was 0.029 cm² V-1 s-1 (at 200 °C).

19.
Dev Reprod ; 22(1): 19-27, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29707681

RESUMEN

In the present study, we employed Hershberger assay to determine possible androgenic or antiandrogenic activities of three di-2-ethylhexyl phthalate (DEHP) substitute candidates. The assay was carried out using immature castrated Sprague-Dawley male rats. After 7 days of the surgery, testosterone propionate (TP, 0.4 mg/kg/day) and test materials (low dose, 40 mg/kg/day; high dose, 400 mg/kg/day) were administered for 10 consecutive days by subcutaneous (s.c.) injection and oral gavage, respectively. Test materials were DEHP, 2-ethylhexyl oleate (IOO), 2-ethylhexyl stearate (IOS) and triethyl 2-acetylcitrate (ATEC). The rats were necropsied, and then the weights of five androgen-dependent tissues [ventral prostate, seminal vesicle, coagulating glands, levator ani-bulbocavernosus (LABC) muscle, paired Cowper's glands, and glans penis] and four androgen-insensitive tissues (kidney, adrenal glands, spleen and liver) were measured. All test materials including DEHP did not exhibit any androgenic activity in the assay. On the contrary, antiandrogen-like activities were found in all test groups, and the order of the intensity was ATEC < DEHP < ISO < IOO in the five androgen-sensitive tissues. There was no statistical difference between low dose treatment and high dose treatment of all replacement candidate groups. In DEHP groups, high dose treatment exhibited significant weight gains in LABC and Glan Penis. There was no statistical difference in androgen-insensitive tissue measurements. Since the effects of ATEC treatment on the accessory sex organs were much less or not present at all when compared to those of DEHP, ATEC could be a strong candidate to replace DEHP. IOO treatment brought most severe weight reduction in all of androgen-sensitive tissues, so this material should be excluded for further screening of DEHP substitute selection.

20.
Dev Reprod ; 21(2): 151-156, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28785736

RESUMEN

High-fructose corn syrup (HFCS) is widely used as sweetener, and its overconsumption is become a major health problem. In the present study, we used adult female rats and applied a 28 days HFCS feeding model to monitor the estrous cycle and changes in tissue weights and histology. Adult female rats were divided into three groups. Animals were fed with ad libitum normal chow and (1) 24 hours tap water (Control group), (2) 12 hours HFCS access during dark period and 12 hours tap water (12H group), and (3) 24 hours HFCS only access (24H group). Total exposure period was 28 days. There is no significant change in body weight between control and HFCS-fed animals. Both absolute and relative weights of ovary in 24H animals were significantly heavier than those in control or 12H animals. The absolute and relative weights of the kidney and liver in 24H groups were significantly heavier than those in control or 12H animals. The estrous cycles of the 24H animals were significantly longer. Histological analyses revealed that 24H ovaries were relatively bigger and possessed more corpus lutea than control ovaries. Uterine sections of 12H and 24H animals showed a well-developed stratum vasculare between inner and outer myometrial layers. The number of endometrial glands were decreased in 12H uteri, and recovered in 24H uteri compared to control. Numbers of convoluted tubule in distal region increased in 12H and 24H kidney samples. Liver specimens of 12H and 24H showed the increased number of fat containing vacuoles. In conclusion, our study demonstrated that HFCS treatment for 28 days could induce (1) changes in length of estrous cycle with extended estrous and diestrous stages, (2) altered ovarian and uterine histology, and (3) liver and renal lipid accumulation. These findings reveal the adverse effects of HFCS drinking on the reproductive function and lipid metabolism of female rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...