Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400395, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38754074

RESUMEN

Ferroelectric hafnium zirconium oxide (HZO) holds promise for nextgeneration memory and transistors due to its superior scalability and seamless integration with complementary metal-oxide-semiconductor processing. A major challenge in developing this emerging ferroelectric material is the metastable nature of the non-centrosymmetric polar phase responsible for ferroelectricity, resulting in a coexistence of both polar and non-polar phases with uneven grain sizes and random orientations. Due to the structural similarity between the multiple phases and the nanoscale dimensions of the thin film devices, accurate measurement of phase-specific information remains challenging. Here, the application of 4D scanning transmission electron microscopy is demonstrated with automated electron diffraction pattern indexing to analyze multiphase polycrystalline HZO thin films, enabling the characterization of crystallographic phase and orientation across large working areas on the order of hundreds of nanometers. This approach offers a powerful characterization framework to produce a quantitative and statistically robust analysis of the intricate structure of HZO films by uncovering phase composition, polarization axis alignment, and unique phase distribution within the HZO film. This study introduces a novel approach for analyzing ferroelectric HZO, facilitating reliable characterization of process-structure-property relationships imperative to accelerating the growth optimization, performance, and successful implementation of ferroelectric HZO in devices.

2.
Adv Mater ; : e2401809, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717569

RESUMEN

Realizing topological superconductivity by integrating high-transition-temperature (TC) superconductors with topological insulators can open new paths for quantum computing applications. Here, a new approach is reported for increasing the superconducting transition temperature ( T C onset ) $( {T_{\mathrm{C}}^{{\mathrm{onset}}}} )$ by interfacing the unconventional superconductor Fe(Te,Se) with the topological insulator Bi-Te system in the low-Se doping regime, near where superconductivity vanishes in the bulk. The critical finding is that the T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ of Fe(Te,Se) increases from nominally non-superconducting to as high as 12.5 K when Bi2Te3 is replaced with the topological phase Bi4Te3. Interfacing Fe(Te,Se) with Bi4Te3 is also found to be critical for stabilizing superconductivity in monolayer films where T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ can be as high as 6 K. Measurements of the electronic and crystalline structure of the Bi4Te3 layer reveal that a large electron transfer, epitaxial strain, and novel chemical reduction processes are critical factors for the enhancement of superconductivity. This novel route for enhancing TC in an important epitaxial system provides new insight on the nature of interfacial superconductivity and a platform to identify and utilize new electronic phases.

3.
Materials (Basel) ; 17(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38473659

RESUMEN

The effect of oxygen reduction on the magnetic properties of LaFeO3-δ (LFO) thin films was studied to better understand the viability of LFO as a candidate for magnetoionic memory. Differences in the amount of oxygen lost by LFO and its magnetic behavior were observed in nominally identical LFO films grown on substrates prepared using different common methods. In an LFO film grown on as-received SrTiO3 (STO) substrate, the original perovskite film structure was preserved following reduction, and remnant magnetization was only seen at low temperatures. In a LFO film grown on annealed STO, the LFO lost significantly more oxygen and the microstructure decomposed into La- and Fe-rich regions with remnant magnetization that persisted up to room temperature. These results demonstrate an ability to access multiple, distinct magnetic states via oxygen reduction in the same starting material and suggest LFO may be a suitable materials platform for nonvolatile multistate memory.

7.
IUCrJ ; 5(Pt 1): 67-72, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29354272

RESUMEN

Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. The ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.

8.
Phys Rev Lett ; 120(1): 016801, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29350963

RESUMEN

The magnetotransport properties of epitaxial films of Cd_{3}As_{2}, a paradigm three-dimensional Dirac semimetal, are investigated. We show that an energy gap opens in the bulk electronic states of sufficiently thin films and, at low temperatures, carriers residing in surface states dominate the electrical transport. The carriers in these states are sufficiently mobile to give rise to a quantized Hall effect. The sharp quantization demonstrates surface transport that is virtually free of parasitic bulk conduction and paves the way for novel quantum transport studies in this class of topological materials. Our results also demonstrate that heterostructuring approaches can be used to study and engineer quantum states in topological semimetals.

9.
Phys Rev Lett ; 119(18): 186803, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219551

RESUMEN

The lattice response of a prototype Mott insulator, SmTiO_{3}, to hole doping is investigated with atomic-scale spatial resolution. SmTiO_{3} films are doped with Sr on the Sm site with concentrations that span the insulating and metallic sides of the filling-controlled Mott metal-insulator transition (MIT). The GdFeO_{3}-type distortions are investigated using an atomic resolution scanning transmission electron microscopy technique that can resolve small lattice distortions with picometer precision. We show that these distortions are gradually and uniformly reduced as the Sr concentration is increased without any phase separation. Significant distortions persist into the metallic state. The results present a new picture of the physics of this prototype filling-controlled MIT, which is discussed.

10.
Sci Rep ; 7(1): 10312, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871210

RESUMEN

We report on angle-dependent measurements of the sheet resistances and Hall coefficients of electron liquids in SmTiO3/SrTiO3/SmTiO3 quantum well structures, which were grown by molecular beam epitaxy on (001) DyScO3. We compare their transport properties with those of similar structures grown on LSAT [(La0.3Sr0.7)(Al0.65Ta0.35)O3]. On DyScO3, planar defects normal to the quantum wells lead to a strong in-plane anisotropy in the transport properties. This allows for quantifying the role of defects in transport. In particular, we investigate differences in the longitudinal and Hall scattering rates, which is a non-Fermi liquid phenomenon known as lifetime separation. The residuals in both the longitudinal resistance and Hall angle were found to depend on the relative orientations of the transport direction to the planar defects. The Hall angle exhibited a robust T 2 temperature dependence along all directions, whereas no simple power law could describe the temperature dependence of the longitudinal resistances. Remarkably, the degree of the carrier lifetime separation, as manifested in the distinctly different temperature dependences and diverging residuals near a critical quantum well thickness, was completely insensitive to disorder. The results allow for a clear distinction between disorder-induced contributions to the transport and intrinsic, non-Fermi liquid phenomena, which includes the lifetime separation.

11.
Micron ; 92: 6-12, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27816744

RESUMEN

We report on a direct measurement of cation and anion sub-lattice strain in an InAs/GaSb type-II strained layer superlattice (T2SLs) using atomic resolution imaging and advanced image processing. Atomic column positions in InAs and GaSb are determined by separating the cation and anion peak intensities. Analysis of the InAs/GaSb T2SLs reveals the compressive strain in the nominal GaSb layer and tensile strain at interfaces between constituent layers, which indicate In incorporation into the nominal GaSb layer and the formation of GaAs like interfaces, respectively. The results are compared with the model-dependent X-ray diffraction measurements in terms of interfacial chemical intermixing and strain. Together, these techniques provide a robust measurement of atomic-scale strain which is vital to determine T2SL properties.

12.
Sci Rep ; 6: 23652, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033955

RESUMEN

Bulk NdNiO3 exhibits a metal-to-insulator transition (MIT) as the temperature is lowered that is also seen in tensile strained films. In contrast, films that are under a large compressive strain typically remain metallic at all temperatures. To clarify the microscopic origins of this behavior, we use position averaged convergent beam electron diffraction in scanning transmission electron microscopy to characterize strained NdNiO3 films both above and below the MIT temperature. We show that a symmetry lowering structural change takes place in case of the tensile strained film, which undergoes an MIT, but is absent in the compressively strained film. Using space group symmetry arguments, we show that these results support the bond length disproportionation model of the MIT in the rare-earth nickelates. Furthermore, the results provide insights into the non-Fermi liquid phase that is observed in films for which the MIT is absent.

13.
Nat Commun ; 5: 4035, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24892640

RESUMEN

Using time-domain thermoreflectance, the thermal conductivity and elastic properties of a sputter deposited LiCoO2 film, a common lithium-ion cathode material, are measured as a function of the degree of lithiation. Here we report that via in situ measurements during cycling, the thermal conductivity of a LiCoO2 cathode reversibly decreases from ~5.4 to 3.7 W m(-1) K(-1), and its elastic modulus decreases from 325 to 225 GPa, as it is delithiated from Li1.0CoO2 to Li0.6CoO2. The dependence of the thermal conductivity on lithiation appears correlated with the lithiation-dependent phase behaviour. The oxidation-state-dependent thermal conductivity of electrolytically active transition metal oxides provides opportunities for dynamic control of thermal conductivity and is important to understand for thermal management in electrochemical energy storage devices.

14.
Ultramicroscopy ; 136: 50-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24012935

RESUMEN

A real space approach is developed based on template matching for quantitative lattice analysis using atomic resolution Z-contrast images. The method, called TeMA, uses the template of an atomic column, or a group of atomic columns, to transform the image into a lattice of correlation peaks. This is helped by using a local intensity adjusted correlation and by the design of templates. Lattice analysis is performed on the correlation peaks. A reference lattice is used to correct for scan noise and scan distortions in the recorded images. Using these methods, we demonstrate that a precision of few picometers is achievable in lattice measurement using aberration corrected Z-contrast images. For application, we apply the methods to strain analysis of a molecular beam epitaxy (MBE) grown LaMnO3 and SrMnO3 superlattice. The results show alternating epitaxial strain inside the superlattice and its variations across interfaces at the spatial resolution of a single perovskite unit cell. Our methods are general, model free and provide high spatial resolution for lattice analysis.

15.
J Agric Food Chem ; 50(22): 6511-4, 2002 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-12381142

RESUMEN

Gardenia blue dye was obtained through the reaction of methylamine with genipin, the aglycone of geniposide isolated from the fruits of Gardenia jasminoides. The resulting blue pigments were passed through Bio-Gel P-2 resin yielding five fractions, GM1-GM5. Four fractions (GM1-GM4) were all blue pigments, and the first eluted higher molecular weight fraction GM1 had a higher tinctorial strength than the later eluted lower molecular weight fractions, GM2-GM4. The last eluted GM5 fraction with lambda(max) of 292 nm was colorless and was confirmed as the true intermediate of the blue pigments on the basis of UV-vis spectrophotometric evidence. The GM5 fraction was composed of two epimeric isomers, and their structures were characterized by (1)H NMR, (1)H-(1)H COSY, (13)C NMR, and HMQC and HMBC spectral measurements.


Asunto(s)
Gardenia/química , Iridoides , Pigmentos Biológicos/química , Piranos/química , Isomerismo , Metilaminas , Peso Molecular , Piranos/análisis , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...